# ESCUELA NORMAL SUPERIOR Y SUPERIOR DE COMERCIO N° 46 "Domingo Guzmán Silva"

# Cuadernillo de Matemática 4to año

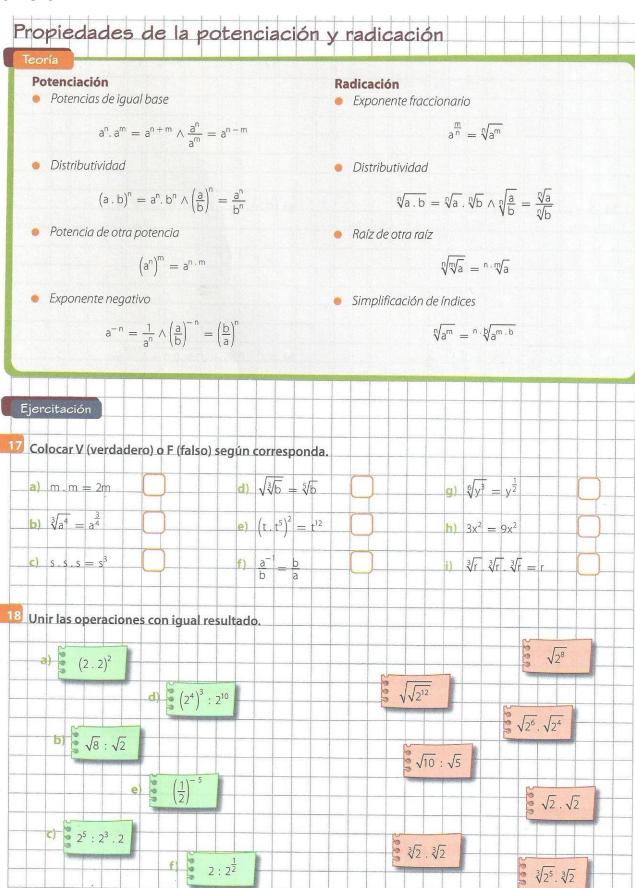
Ciclo lectivo 2025

#### Organización del cuadernillo

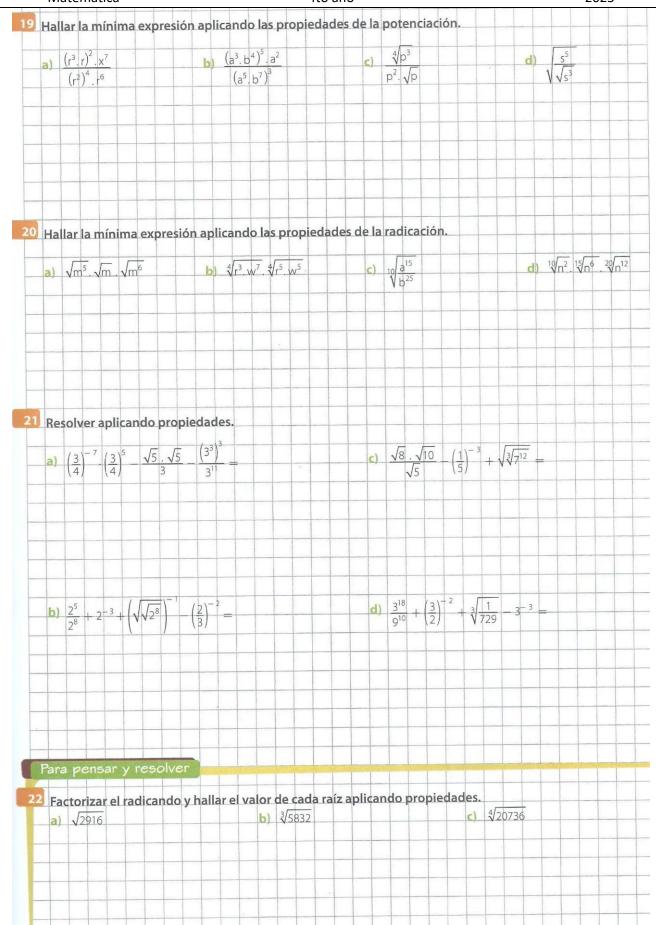
|            |                                             | Pagina |
|------------|---------------------------------------------|--------|
| Revisión   | Propiedades de potenciación y radicación    | 1      |
| Unidad I   | Expresiones algebraicas enteras. Polinomios | 3      |
| Unidad II  | Factorización de polinomios                 | 19     |
| Unidad III | Funciones                                   | 32     |
| Unidad IV  | Función Polinómica                          | 42     |

#### Acuerdo Pedagógico

#### Pautas de trabajo y convivencia:


- Queda prohibido el uso del celular en el aula, excepto que la/el docente lo autorice para trabajar en clases.
- A partir del 2do año, <u>es necesario contar con calculadoras científicas</u> como herramienta de aprendizaje y trabajo propio de la materia.
- Los estudiantes deben asistir a clases con los elementos necesarios para su desarrollo: carpeta, lapicera, lápiz, regla, goma y cuando sea necesario elementos de geometría.
- Los alumnos cuentan con un cuadernillo de trabajo que deberán tener en cada clase de matemática en formato papel.
- Es importante el respeto hacia cada integrante de la institución (compañeros, docentes, personal no docente, preceptores y directivos).

#### Para acreditar la materia:


- Asistencia a clases
- Participación en clases
- Carpeta y cuadernillo completos
- Aprobar las evaluaciones orales, escritas, grupales y/o individuales.
- Se informará con la suficiente antelación las fechas que serán evaluados/as.
- Se tomará un trabajo integrador a fin de año.

| Firma estudiante | Firma padre/madre/tutor |
|------------------|-------------------------|

#### Revisión:



## ESCUELA NORMAL SUPERIOR Y SUPERIOR DE COMERCIO N°46 "Domingo Guzmán Silva" Matemática 4to año 202



## Unidad I: Expresiones algebraicas. Polinomios

Expresiones algebraicas. Polinomios

PROF. DE MATEMATICA

Una expresión algebraica es una combinación finita de números, letras, o números y letras, ligados entre sí por la adición, la sustracción, la multiplicación, la división, la potenciación y/o la radicación. Los números se denominan coeficientes (salvo los exponentes de las potencias) y las letras, variables o indeterminadas.

a) 
$$\frac{3-0.5w}{2}$$
 b)  $3x^2-2^3$  c)  $\sqrt{a}+c^5$  d)  $\frac{3+z}{2}$  e)  $\frac{r+1}{s-2}$  f)  $\sqrt{5}x^5$ 

**b)** 
$$3x^2 - 2^3$$

c) 
$$\sqrt{a} + c$$

d) 
$$\frac{3+z}{2}$$

e) 
$$\frac{r+1}{s}$$

$$\sqrt{5}x^5$$

Cuando la variable no está afectada por una raíz o no actúa como divisor, las expresiones algebraicas son enteras y se denominan polinomios. Los ejemplos c) y e) no son polinomios; sí lo son a), b), d) y f).

Marcar con una X las expresiones algebraicas que son polinomios.

a) 
$$3-5^{-1}$$

**g)** 
$$2a^{\frac{3}{4}} - 5b^{\frac{1}{2}}$$

**b)** 
$$\sqrt{3}x - y$$

$$3z^4 - \frac{1}{5}m^5$$

h) 
$$\frac{6}{(x-y)^{-2}}$$

f) 
$$(\sqrt{3}x - 1)$$
: z

$$\frac{4w^{-5}}{9w^{-3}}$$

Polinomios de variable x

Un monomio es un polinomio de un solo término y su grado es el valor del exponente de la variable x.

a) 
$$\frac{1}{3}x \rightarrow \text{grado}$$

a) 
$$\frac{1}{3}x \rightarrow \text{grado } 1$$
 b)  $0.7x^3 \rightarrow \text{grado } 3$  c)  $2.5 \rightarrow \text{grado } 0$  d)  $2^5.x^4 \rightarrow \text{grado } 4$ 

d) 
$$2^5$$
.  $x^4 \rightarrow grado 4$ 

Dos monomios son **semejantes** cuando tienen el mismo grado, por ejemplo  $-2x^2$  y  $\frac{3}{4}x^2$ .

Un polinomio es una suma algebraica de monomios y está reducido cuando no tiene monomios semejantes.

a) 
$$P(x) = \underbrace{-3x^2 + 5 - 0.4x + \frac{2}{7}x^3}_{\text{reducido}}$$

**b)** 
$$Q(x) = 5x - 6x^2 + 3x + x^2 - 4 = \underbrace{-5x^2 + 8x - 4}_{\text{reducido}}$$

El **valor numérico** de un polinomio es el valor que se obtiene al reemplazar **x** por algún número real. Por ejemplo: 
$$P(x) = 5x^2 + 3x - 7 \Rightarrow \begin{cases} P(2) = 5 \cdot 2^2 + 3 \cdot 2 - 7 = 20 + 6 - 7 = 19 \\ P(-1) = 5 \cdot (-1)^2 + 3 \cdot (-1) - 7 = 5 - 3 - 7 = -5 \end{cases}$$

Hallar el polinomio reducido en cada caso.

a) 
$$2x - x^2 + 2 - 7x + 5x^2 + 3x - 8 =$$

**b)** 
$$x^5 - x^2 - x + x^3 - x^5 + x - x^2 + x^3 + x =$$

c) 
$$\frac{1}{2}x^3 - 5x + x^3 + 8x^2 - 4x - 7 - \frac{3}{2}x^3 =$$

**d)** 
$$5x^4 - 3x + 4x^2 - 0,5x + x^3 + 9 + x =$$

**e)** 
$$\frac{2}{3} - 0,\hat{2}x^2 + 1,\hat{1} - \frac{5}{6}x^2 - 4x^4 + \frac{5}{3}x^2 =$$

El grado de un polinomio reducido es el grado de su mayor monomio no nulo.

El coeficiente principal es el coeficiente del monomio de mayor grado.

El término independiente es el coeficiente del monomio de grado cero.

Un polinomio está ordenado cuando sus términos están ordenados en forma creciente o decreciente respecto de los exponentes de la variable.

$$\underbrace{3x - 5x^3 + 4 + 2x^2}_{\text{No está ordenado}} = \underbrace{-5x^3 + 2x^2 + 3x + 4}_{\text{Ordenado de manera decreciente}} = \underbrace{4 + 3x + 2x^2 - 5x^3}_{\text{Ordenado de manera creciente}} \rightarrow \begin{cases} \text{grado: 3} \\ \text{coeficiente principal: } -5 \\ \text{término independiente: 4} \end{cases}$$

Un polinomio está completo cuando tiene todas las potencias decrecientes del grado.

a) 
$$P(x) = 3x^4 - 2x + 5x^2 + 1$$
No está completo

a) 
$$P(x) = \underbrace{3x^4 - 2x + 5x^2 + 1}_{\text{No está completo}}$$
 b)  $Q(x) = \underbrace{5 + 7x - 4x^5 + 3x^2 - x^4 + 2x^3}_{\text{Está completo}}$ 

Para completar un polinomio, se agregan los términos que faltan con coeficiente 0

$$R(x) = 2 - 5x^4 + 3x^2 = -5x^4 + 0x^3 + 3x^2 + 0x + 2$$

Según la cantidad de términos, un polinomio reducido recibe los siguientes nombres: si tiene 1término, monomio; 2 términos, binomio; 3 términos, trinomio; 4 términos, cuatrinomio; y luego, polinomio de n términos.

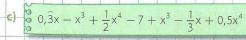
#### Ejercitación

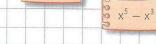
irracional.

Escribir un polinomio reducido que cumpla con cada una de las siguientes condiciones.

- a) Binomio de grado tres y término independiente
  - c) Monomio de grado seis y coeficiente principal no entero.
- b) Trinomio completo con coeficientes negativos.
- d) Cuatrinomio de grado cinco y coeficientes irracionales.

4 Unir los polinomios iguales.


a)  $3 - x^2 + 5x^3 + 0.2x^2 - 4x^3 + \frac{8}{10}x^2$ 

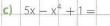



b)  $\frac{1}{4}x^4 - 2x + 6x^2 - 0.25x^4 + 3x - 5x^2$ 



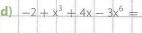
 $x^2 + x$ 






d)  $-1.5x^3 + 2 - x + \frac{1}{2}x^3 + 2x + x^3 - 6$ e)  $\frac{5}{6}x^5 - 1.2x^3 + x^2 + 0.16x^5 + \frac{1}{5}x^3 - x^2$ 




Completar y ordenar los siguientes polinomios.

a)  $-2x^3 + 5 + x =$ 



**b)**  $4 + 2x^5 - 3x^2 - x =$ 





## Para trabajar en clase

## Adición y sustracción de polinomios

Dados los polinomios:  $P(x) = 5x - 3 + 4x^3 - 2x^2$  y  $Q(x) = 2x^3 - x + 6x^2 - 4$ 

 Para sumar dos polinomios, se suman sus monomios semejantes; y para restarlos, se suman los opuestos del polinomio que resta.

a) 
$$P(x) + Q(x)$$
 +  $4x^3 - 2x^2 + 5x - 3$   
+  $2x^3 + 6x^2 - x - 4$   
 $6x^3 + 4x^2 + 4x - 7$ 

+ 
$$\frac{4x^3 - 2x^2 + 5x - 3}{2x^3 + 6x^2 - x - 4}$$
 **b)**  $P(x) - Q(x)$  +  $\frac{4x^3 - 2x^2 + 5x - 3}{-2x^3 - 6x^2 + x + 4}$  +  $\frac{-2x^3 - 6x^2 + x + 4}{2x^3 - 8x^2 + 6x + 1}$ 

 Para multiplicar o dividir un polinomio por un número real, se aplica la propiedad distributiva y se multiplica o divide cada uno de sus coeficientes por el número real.

a) 
$$-3 \cdot P(x) = -3 \cdot (4x^3 - 2x^2 + 5x - 3) = -12x^3 + 6x^2 - 15x + 9$$

**b)** Q(x): 
$$4 = \frac{2x^3 + 6x^2 - x - 4}{4} = \frac{1}{2}x^3 + \frac{3}{2}x^2 - \frac{1}{4}x - 1$$

#### Ejercitación

Dados los siguientes polinomios:

c) C(x) - (A(x) + B(x))

 $A(x) = -5 + 3x^{3} + 2x - x^{4} + 4x^{2}$ ,  $B(x) = 5x^{3} - 3x + 2x^{2} - 3x^{4} - 3y$   $C(x) = -6x^{7} + 4x - 2x^{3} - 8 + 2x^{4}$ 

Resolver las siguientes operaciones.

f)  $4A(x) - 3 \cdot (B(x) + C(x))$ 

## Multiplicación de polinomios

#### Teori

Para multiplicar dos polinomios, se debe aplicar la propiedad distributiva y la propiedad del producto de dos potencias de igual base:  $x^n$ .  $x^m = x^{n+m}$ 

a) 
$$-\frac{2}{3}x^2 \cdot \left(\frac{9}{8}x^2 + \frac{3}{4}x - \frac{1}{2}\right) = -\frac{2}{3}x^2 \cdot \frac{9}{8}x^2 - \frac{2}{3}x^2 \cdot \frac{3}{4}x - \frac{2}{3}x^2 \cdot \left(-\frac{1}{2}\right) = -\frac{3}{4}x^4 - \frac{1}{2}x^3 + \frac{1}{3}x^2$$

**b)** 
$$(-2x^3 + 5x)(3x^2 - 4x) = -2x^3 \cdot 3x^2 - 2x^3 \cdot (-4x) + 5x \cdot 3x^2 + 5x \cdot (-4x) = -6x^5 + 8x^4 + 15x^3 - 20x^2$$

#### Ejercitación

Resolver los siguientes productos.

**a)** 
$$-\frac{3}{5}x^2$$
,  $0, \hat{5}x$ ,  $(-0, 2x) =$  **c)**  $-x^2$ ,  $0, 5x$ ,  $(-x^3) =$  **e)**  $-1, 5x$ ,  $(-\frac{5}{6}x^4)$ ,  $(-0, 3x^2) =$ 

**b)** 
$$\frac{5}{4}x \cdot (-0.6x^3) \cdot 2x =$$
 **d)**  $x^3 \cdot (-0.3x) \cdot 1.2x =$  **f)**  $0.75x^4 \cdot (-\frac{2}{5}x^3) \cdot (-x^2) =$ 

8 Resolver las siguientes operaciones.

a) 
$$-0.8x \cdot \left(15x - 2.5x^3 + 10 - \frac{15}{8}x^2\right) =$$
 d)  $\left(2x^2 + 3x - 1\right)(7x - 4) =$ 

**b)** 
$$(-1,3x^4 - \frac{2}{9}x + \frac{5}{6}x^5 - 0,4)$$
  $(-2,25x^4 = \frac{2}{9}x + \frac{5}{6}x^5 - 0,4)$   $(-3x^5 + 2x^3)(4x^2 + 5x) = \frac{2}{9}x^5 + \frac{5}{6}x^5 - 0,4)$  **e)**  $(-3x^5 + 2x^3)(4x^2 + 5x) = \frac{2}{9}x^5 + \frac{5}{6}x^5 - 0,4)$  **e)**  $(-3x^5 + 2x^3)(4x^2 + 5x) = \frac{2}{9}x^5 + \frac{5}{6}x^5 - 0,4)$ 

#### Cuadrado de un binomio

Para elevar un binomio al cuadrado, se lo debe multiplicar por sí mismo.

$$(a + b)^2 = (a + b) \cdot (a + b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2$$

$$\underbrace{(a+b)^2}_{\text{Cuadrado de un binomi o}} = \underbrace{a^2 + 2ab + b^2}_{\text{Trinomio cuadrado perfecto}}$$

a) 
$$(x + 5)^2 = x^2 + 2 \cdot x \cdot 5 + 5^2 = x^2 + 10x + 25$$

**b)** 
$$(2x-3)^2 = (2x)^2 + 2 \cdot 2x \cdot (-3) + (-3)^2 = 4x^2 - 12x + 9$$

#### Ejercitación

Olocar V (verdadero) o F (falso) según corresponda.

a) 
$$(x + 2)^2 = x^2 + 4$$

**d)** 
$$(x+3)^2 = x^2 + 9 + 6x$$

**b)** 
$$(x-3)^2 = x^2 - 6x - 9$$

c) 
$$\left(x + \frac{1}{2}\right)^2 = x^2 + x + 0.25$$

**f)** 
$$(-x-1)^2 = -x^2 + 2x - 1$$

Unir cada cuadrado de binomio con su correspondiente trinomio cuadrado perfecto.

a) 
$$(x + 1)^2$$

d) 
$$(-x-1)^2$$

$$x^2 + 2x - 1$$





$$-x^2 - 2x - 1$$

$$(-x+1)^2$$
f)  $(-x+1)^2$ 

$$x^2 + 2x + 1$$

 $-x^2 + 2x - 1$ 

Completar los siguientes casilleros vacíos.

c) 
$$(+2)^2 = +12x +$$

**b)** 
$$(-1)^2 = 4x^2 + (-1)^2 = 4x^2 + (-1)^2$$

$$+49$$
 d)  $+$   $)^2 = 25x^2 + 30x +$ 

Desarrollar los siguientes cuadrados.

a) 
$$(2x^2 + 3x)^2 =$$

**b)** 
$$(x^3 - x^2)^2 =$$

c) 
$$(-5x^4 + x^5)^2 =$$

## Cubo de un binomio

Para elevar un binomio al cubo, se lo multiplica por su cuadrado:

$$(a + b)^3 = (a + b)^2$$
.  $(a + b) = (a^2 + 2ab + b^2)$ .  $(a + b) =$ 

$$a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

En conclusión: 
$$\underbrace{(a+b)^3}_{\text{Cubo de un binomio}} = \underbrace{a^3 + 3a^2b + 3ab^2 + b^3}_{\text{Cuatrinomio cubo perfecto}}$$

a) 
$$(x+6)^3 = x^3 + 3 \cdot x^2 \cdot 6 + 3 \cdot x \cdot 6^2 + 6^3 = x^3 + 18x^2 + 108x + 216$$

**b)** 
$$(3x-4)^2 = (3x)^3 + 3 \cdot (3x)^2 \cdot (-4) + 3 \cdot 3x \cdot (-4)^2 + (-4)^3 = 27x^3 - 108x^2 + 144x - 64$$

13 Desarrollar los siguientes cubos.

a) 
$$(x + 5)^3 =$$

**b)** 
$$(-x - 3)^3 =$$

(2x + 7)
$$^3$$
 =


**d)** 
$$(-x^2 + 4x)^3 =$$

e) 
$$(5x^3 - 2x^2)^3 =$$

14 Resolver las siguientes operaciones.

a) 
$$(2x-3)^2 + (3x-1)(2-5x) =$$

**b)** 
$$(3x^2 - 4x)(6x^2 - 7) - (x^2 + 5x)^2 =$$



15 Demostrar geométricamente que la superficie del siguiente cuadrado es  $m^2 + 2mn + n^2$ .

n

c)  $(x-2)^3 + (2x-5)(3x-x^2) =$ 

d)  $(3x^2 - 2x)(x - 6)^2 - (2x - x^2)^3 =$ 

| М        | ater | náti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | са                                       | -                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 1 1   |             |            | 4                                       | 4to año                                 | )                 |                                         |                   |      |      | 20                                      | 025 |
|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|-------------|------------|-----------------------------------------|-----------------------------------------|-------------------|-----------------------------------------|-------------------|------|------|-----------------------------------------|-----|
| Re       | duci | r ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | da po                                    | olino                     | mio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |       |             |            |                                         |                                         |                   |                                         |                   |      |      |                                         |     |
| a)       | P(x) | 1 = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 0,25                      | 5x + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2x <sup>2</sup> –           | 0,6x  | 3 + 3       | 2 x -      | 3x <sup>2</sup> =                       |                                         |                   |                                         |                   |      |      |                                         |     |
|          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |       |             |            |                                         | 0,7x =                                  |                   |                                         |                   |      |      |                                         |     |
|          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                      | 33                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x <sup>5</sup> — 0          |       |             |            |                                         |                                         |                   |                                         |                   |      |      |                                         |     |
|          |      | 9 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 31 8                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x + 4,                      | 1     | 1           |            |                                         | 4                                       |                   |                                         |                   |      |      |                                         |     |
|          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{3} + \frac{2}{9}$ |       |             |            |                                         |                                         |                   |                                         |                   |      |      |                                         |     |
| f)       | Cor  | nple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tar la                                   | tab                       | la.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |       |             |            |                                         |                                         |                   |                                         |                   |      |      |                                         |     |
|          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inom                                     | io                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non                         | nbre  |             | Ī          | (                                       | Grado                                   |                   |                                         | ficient<br>ncipal |      | érmi | no<br>diente                            |     |
| -        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P(x)                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |       |             | -          |                                         |                                         |                   |                                         |                   | <br> | ···· |                                         |     |
|          |      | Name and Address of the Owner, where the Owner, which the | Q(x)<br>R(x)                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |       | *********** |            | *************************************** |                                         |                   |                                         |                   |      |      |                                         | -   |
|          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T(x)                                     |                           | MATERIAL PROPERTY AND ADDRESS OF THE PARTY AND |                             |       |             | +          |                                         | *************************************** |                   | *************************************** |                   |      |      | *************************************** |     |
|          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S(x)                                     |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |       |             |            |                                         |                                         |                   |                                         |                   |      |      |                                         |     |
|          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J(X)                                     | Charles of the last       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | -     |             | -          | 7                                       |                                         | and production of |                                         |                   |      |      |                                         |     |
|          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |       |             |            |                                         |                                         |                   |                                         |                   |      |      | -                                       |     |
| На       | llar |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | umé                       | rico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | de ca                       | ıda p | oolir       | omic       | <b>3.</b>                               |                                         |                   |                                         |                   |      |      |                                         |     |
|          |      | el va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lor n                                    |                           | <b>árico</b><br>– 2x²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |       | oolir       |            | ) =                                     |                                         |                   |                                         |                   |      |      |                                         |     |
| a)_      | E(x) | el va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>lor n</b> :                           | ⊢ 5x                      | - 2x <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |       | -           | E(2        |                                         | -                                       |                   |                                         |                   |      |      |                                         |     |
| a)<br>b) | E(x) | el va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>lor n</b> : -3x <sup>3</sup> + -x - 2 | ⊢ 5x<br>2x <sup>4</sup> + | - 2x <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + 7                         |       | <b>→</b>    | E(2<br>H(- | ) =                                     |                                         |                   |                                         |                   |      |      |                                         |     |

**f)**  $x^2 + 36 = (x + 6)^2$ 

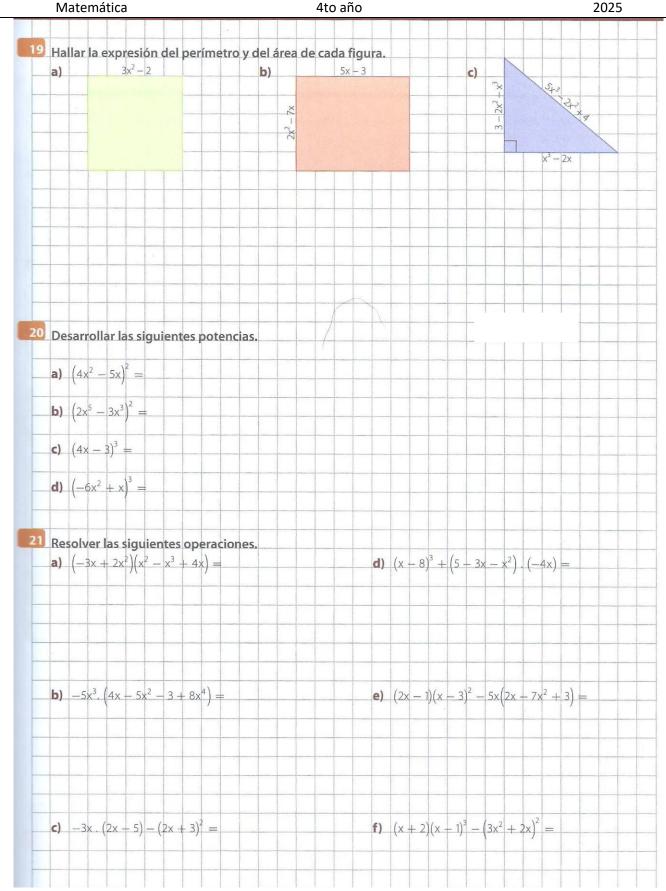
**g)**  $(x+2)(x-2) = x^2 - 4x + 4$ 

**h)**  $x^2 + 100 = (x - 10)^2 - 20x$ 

**j)**  $(x-5)^2 = (x+5)(x-5) - 10x$ 

i)  $3x^3 \cdot (2x^2 - x^2) = 3x^5$ 

18 Colocar V (verdadero) o F (falso) según corresponda.


**a)**  $x^3 - x^2 = x$ 

**b)**  $x(x+3)-3=x^2$ 

(c)  $x + x + x^2 = x(x + 2)$ 

**e)** (x-1)(x+1) = x(x-1) + x - 1

**d)**  $\frac{10x - 5}{2} = 5(x - 1)$ 



#### **Ejercicios combinados**

1) Dados los polinomios:

$$A(x) = x - 1$$

$$B(x) = x^2 - 2x$$

$$C(x) = 2 - 3x^2 + 2x$$
  $D(x) = x + 1$ 

$$D(x) = x + 1$$

Resuelvan las siguientes operaciones identificando los productos notables que hubiera.

a) 
$$B^2 - A$$

b) 
$$A \cdot B - C$$

c) 
$$A^2 - B$$

$$d) A \cdot D + B$$

e) 
$$C + 3 \cdot B$$

$$f(2 \cdot R - A \cdot D)$$

a) 
$$C^2 + x \cdot B - 2x^2 A$$

f) 
$$2 \cdot B - A \cdot D$$
 g)  $C^2 + x \cdot B - 2x^2A$  h)  $C - 2 \cdot (B + A) + 4x^3D$ 

#### **DIVISIÓN DE MONOMIOS Y POLINOMIOS**

División de monomios

Eiemplo:

$$8x^5: 2x^3 = (8:2)(x^5:x^3)$$
$$= 4x^2$$

Para tener en cuenta: al dividir la indeterminada restamos sus exponentes ya que es un cociente de potencias de igual base.

División de un polinomio por un monomio

Ejemplo:

$$(6x^5 + 3x^3 - 9x) : (-3x) = 6x^5 : (-3x) + 3x^3 : (-3x) - 9x : (-3x)$$
$$= -2x^4 - x^2 + 3$$

#### **Actividades**

1) Efectúen las siguientes divisiones de monomios:

$$a) (2x^4) : \left(\frac{1}{4}x^2\right)$$

$$b)(-10x^2):(5x^2)$$

$$c)$$
 (20 $x^3$ ) : (0,5 $x$ )

2) Realicen las divisiones.

a) 
$$(8x^4 - 6x^3 + 10x^2)$$
:  $(-2x^2)$ 

b) 
$$(2x^2 + 6x + 4x)$$
:  $(x)$ 

c) 
$$(6x^5 - 9x^3 + 3x^2)$$
:  $(3x)$ 

$$d)(14x^3-28x^4):(-7x^2)$$

3) Resuelvan las operaciones combinadas con polinomios:

a) 
$$(x + 2) \cdot (x - 2) + (2x - 1) \cdot (x + 1)$$

b) 
$$(2x-2) \cdot (3x-1) - (6x-1) \cdot (x+2)$$

c) 
$$2x(2y + x) - 3y(2x - y) + xy(2 - y)$$

d) 
$$8x^3 - 2x[y - 2x(y - 2x) - y]$$

e) 
$$\frac{1}{7}(105x^2 - 63x - 84) - (120x^2 - 72x - 96)$$
 f)  $(x^2 - 2x) : (-2x) + 6(3x^2 + x + 2)$ 

$$f)(x^2-2x):(-2x)+6(3x^2+x+2)$$

$$a) (6x^4 - 3x^3 - x) : (3x) + (x + 5) \cdot (x + 2)$$

g) 
$$(6x^4 - 3x^3 - x)$$
:  $(3x) + (x + 5) \cdot (x + 2)$  h)  $3x^2 + (x + 3) \cdot (x + 4) - (2x^5 + x^3)$ :  $(-x^2)$ 

i) 
$$x(2-x)^2 + 4x^2 - 7$$

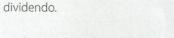
$$i)(x^2+3)\cdot(x^2-3)+(2x^2+1)^2$$

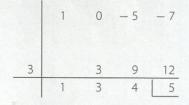
$$k)(x+2)^2 + (2x^2): \frac{1}{4}x^3 + x \cdot (-x)$$

$$l) (2x^3 + 3) \cdot (2x^3 - 3) - (8x^6 - 18) : 2$$

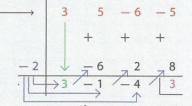
#### Regla de Ruffini

Es un método que se utiliza para dividir un polinomio por otro de la forma x + a.

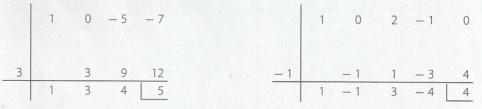

Por ejemplo: 
$$(-6x + 3x^3 - 5 + 5x^2)$$
:  $(x + 2)$ .


El polinomio dividendo debe estar completo y ordenado.  $\longrightarrow$  3x<sup>3</sup> + 5x<sup>2</sup> - 6x - 5

Se escriben los coeficientes del dividendo. -El coeficiente principal se "baja" igual, se lo multiplica por el opuesto del término independiente del divisor y se suma con el segundo coeficiente. Así sucesivamente hasta llegar al último, que es el


resto R(x). Los valores que se obtienen son los coeficientes del

cociente y el último valor es el resto. El polinomio cociente C(x) es un grado menor que el






Cociente:  $x^2 + 3x + 4$  y resto: 5



**b)** 
$$\underbrace{\left(2x^2 + x^4 - x\right)}_{x^4 + 0x^3 + 2x^2 - x + 0}$$
: (x + 1)



Cociente:  $x^3 - x^2 + 3x - 4$  y resto: 4

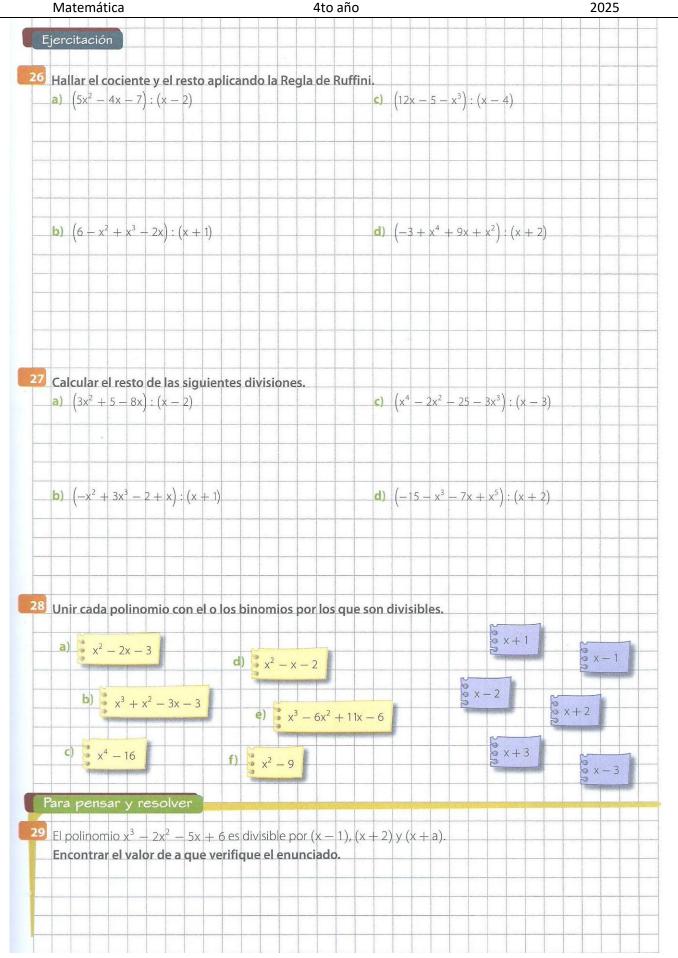
#### Teorema del resto

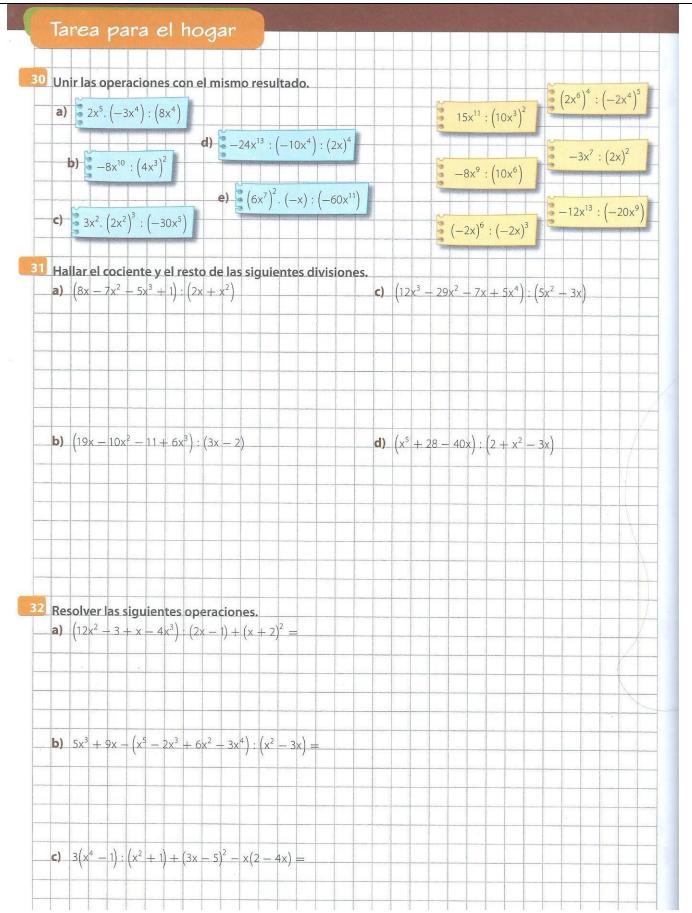
El resto de la división de un polinomio por otro de la forma x + a es el valor numérico del polinomio, cuando se reemplaza su variable por el opuesto del término independiente del divisor.

a) 
$$P(x) = -5x + x^3 - 7y Q(x) = x - 3$$

$$P(3) = -5.3 + 3^3 - 7 = -15 + 27 - 7 = 5$$

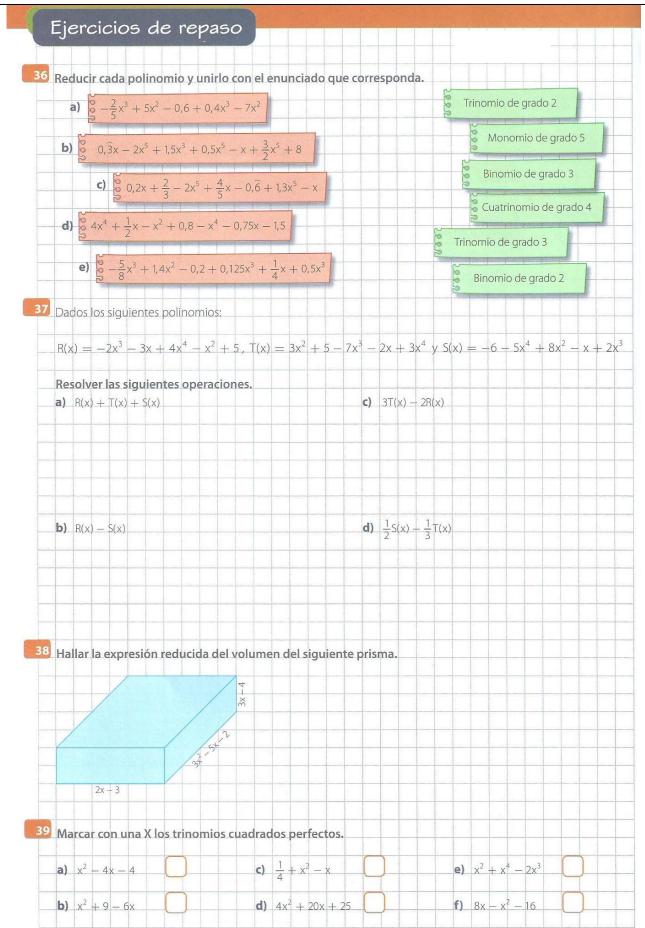
Resto:5


a) 
$$P(x) = -5x + x^3 - 7y Q(x) = x - 3$$
  
El resto de  $P(x)$ :  $Q(x)$  es  $P(3)$   
b)  $P(x) = 2x^2 + x^4 - xy Q(x) = x + 1$   
El resto de  $P(x)$ :  $Q(x)$  es  $P(-1)$ 


$$P(3) = -5.3 + 3^3 - 7 = -15 + 27 - 7 = 5$$
  $P(-1) = 2(-1)^2 + (-1)^4 - (-1) = 2 + 1 + 1 = 4$ 

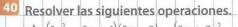
Si el resto es 0, la división es **exacta** y significa que P(x) es **divisible** por Q(x).

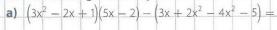
$$(x^2 - x - 6) : (x + 2) \rightarrow (-2)^2 - (-2) - 6 = 4 + 2 - 6 = 0 \rightarrow x^2 - x - 6$$
 es divisible por  $x + 2$ 


## ESCUELA NORMAL SUPERIOR Y SUPERIOR DE COMERCIO N°46 "Domingo Guzmán Silva"






## ESCUELA NORMAL SUPERIOR Y SUPERIOR DE COMERCIO N°46 "Domingo Guzmán Silva"


| Hallar el cociente y el resto aplicando la Regla de Ruffini. a) (-5 + 2x² - x² + 4x) : (x - 3) b) (4x - x² + 2x²) : (x + 2) d) (x² - x² + 3) : (x - 2)  Marcar con una X las divisiones exactas. a) (x² - 10 + 3x) : (x + 5) b) (4x - 5 + 2x² - 1 : (x - 3) c) (-x² + 5x - x² + 6) : (x + 2) f) (-2x + x² - 3x² - x² - 48) : (x - 4)  Resolver las siguientes operaciones. a) (x + x² - 20) : (x + 5) + (4x² - 6x²) : (-2x²) = c) (3x² - 48) : (x + 2) + (2x - 5)² = c) b) (5x - 2y² - (-9x² - 3 + 3x² + x) : (x - 3) = d) (x² - 8) : (x - 2) - (2x² + 54) : (x + 3) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| b) $(4x - x^2 + 2x^2) \cdot (x + 2)$ d) $(x^2 - x^5 + 3) \cdot (x - 2)$ Marcar con una X las divisiones exactas.  a) $(x^2 - 10 + 3x) \cdot (x + 5)$ d) $(3x^2 - x^5 + 2) \cdot (x - 1)$ b) $(4x - 5 + 2x^2) \cdot (x - 3)$ e) $(x^4 - 31) \cdot (x + 3)$ c) $(-x^3 + 5x - x^2 + 6) \cdot (x + 2)$ f) $(-2x + x^5 - 3x^3) \cdot (x - 4)$ S Resolver las siguientes operaciones.  a) $(x + x^2 - 20) \cdot (x + 5) + (4x^2 - 6x^2) \cdot (-2x^2) = $ c) $(3x^4 - 48) \cdot (x + 2) + (2x - 3)^3 = $                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Marcar con una X las divisiones exactas.  a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = $ c) $(3x^6 - 48) : (x + 2) + (2x - 3)^3 = $                                                                                                                                                                                                                                           | <b>b)</b> $(4x - x^2 + 2x^3)$ : $(x + 2)$ <b>d)</b> $(x^3 - x^5 + 3)$ : $(x - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Marcar con una X las divisiones exactas.  a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = $ c) $(3x^6 - 48) : (x + 2) + (2x - 3)^3 = $                                                                                                                                                                                                                                           | <b>b)</b> $(4x - x^2 + 2x^3): (x + 2)$ <b>d)</b> $(x^3 - x^5 + 3): (x - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Marcar con una X las divisiones exactas.  a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = $ c) $(3x^6 - 48) : (x + 2) + (2x - 3)^3 = $                                                                                                                                                                                                                                           | <b>b)</b> $(4x - x^2 + 2x^3)$ : $(x + 2)$ <b>d)</b> $(x^3 - x^5 + 3)$ : $(x - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Marcar con una X las divisiones exactas.  a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = $ c) $(3x^6 - 48) : (x + 2) + (2x - 3)^3 = $                                                                                                                                                                                                                                           | <b>b)</b> $(4x - x^2 + 2x^3) : (x + 2)$ <b>d)</b> $(x^3 - x^5 + 3) : (x - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Marcar con una X las divisiones exactas.  a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = $ c) $(3x^6 - 48) : (x + 2) + (2x - 3)^3 = $                                                                                                                                                                                                                                           | <b>b)</b> $(4x - x^2 + 2x^3) : (x + 2)$ <b>d)</b> $(x^3 - x^5 + 3) : (x - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Marcar con una X las divisiones exactas.  a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = $ c) $(3x^6 - 48) : (x + 2) + (2x - 3)^3 = $                                                                                                                                                                                                                                           | <b>b)</b> $(4x - x^2 + 2x^3)$ : $(x + 2)$ <b>d)</b> $(x^3 - x^5 + 3)$ : $(x - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Marcar con una X las divisiones exactas.  a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = $ c) $(3x^6 - 48) : (x + 2) + (2x - 3)^3 = $                                                                                                                                                                                                                                           | <b>b)</b> $(4x - x^2 + 2x^3) : (x + 2)$ <b>d)</b> $(x^3 - x^5 + 3) : (x - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Marcar con una X las divisiones exactas.  a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = $ c) $(3x^6 - 48) : (x + 2) + (2x - 3)^3 = $                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ e) $(x^4 - 81) : (x + 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ 5 Resolver las siguientes operaciones. a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = (x + 2)$ c) $(3x^4 - 48) : (x + 2) + (2x - 3)^3 = (x + 2)$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ e) $(x^4 - 81) : (x + 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ 5 Resolver las siguientes operaciones. a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = (x + 2)$ c) $(3x^4 - 48) : (x + 2) + (2x - 3)^3 = (x + 2)$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     |
| a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ e) $(x^4 - 81) : (x + 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ 5 Resolver las siguientes operaciones. a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = (x + 2)$ c) $(3x^4 - 48) : (x + 2) + (2x - 3)^3 = (x + 2)$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ e) $(x^4 - 81) : (x + 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ 5 Resolver las siguientes operaciones. a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = (x + 2)$ c) $(3x^4 - 48) : (x + 2) + (2x - 3)^3 = (x + 2)$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ e) $(x^4 - 81) : (x + 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ 5 Resolver las siguientes operaciones. a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = (x + 2)$ c) $(3x^4 - 48) : (x + 2) + (2x - 3)^3 = (x + 2)$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ e) $(x^4 - 81) : (x + 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ 5 Resolver las siguientes operaciones. a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = (x + 2)$ c) $(3x^4 - 48) : (x + 2) + (2x - 3)^3 = (x + 2)$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ e) $(x^4 - 81) : (x + 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ 5 Resolver las siguientes operaciones. a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = (x + 2)$ c) $(3x^4 - 48) : (x + 2) + (2x - 3)^3 = (x + 2)$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| a) $(x^2 - 10 + 3x) : (x + 5)$ b) $(4x - 5 + 2x^2) : (x - 3)$ e) $(x^4 - 81) : (x + 3)$ c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^5 - 3x^3) : (x - 4)$ 5 Resolver las siguientes operaciones. a) $(x + x^2 - 20) : (x + 5) + (4x^3 - 6x^2) : (-2x^2) = (x + 2)$ c) $(3x^4 - 48) : (x + 2) + (2x - 3)^3 = (x + 2)$                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| b) $(4x-5+2x^2):(x-3)$ c) $(-x^3+5x-x^2+6):(x+2)$ f) $(-2x+x^5-3x^3):(x-4)$ Resolver las siguientes operaciones. a) $(x+x^2-20):(x+5)+(4x^3-6x^2):(-2x^2)=$ c) $(3x^4-48):(x+2)+(2x-3)^3=$                                                                                                                                                                                                                                                                                                                                                                           | Marcar con una X las divisiones exactas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| b) $(4x-5+2x^2):(x-3)$ c) $(-x^3+5x-x^2+6):(x+2)$ f) $(-2x+x^5-3x^3):(x-4)$ Resolver las siguientes operaciones. a) $(x+x^2-20):(x+5)+(4x^3-6x^2):(-2x^2)=$ c) $(3x^4-48):(x+2)+(2x-3)^3=$                                                                                                                                                                                                                                                                                                                                                                           | a) $(x^2 + 10 + 3x) \cdot (x + 5)$ d) $(3x^2 - x^5 - 2) \cdot (x - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| c) $(-x^3 + 5x - x^2 + 6)$ : $(x + 2)$ f) $(-2x + x^5 - 3x^3)$ : $(x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20)$ : $(x + 5) + (4x^3 - 6x^2)$ : $(-2x^2) =$ c) $(3x^4 - 48)$ : $(x + 2) + (2x - 3)^3 =$                                                                                                                                                                                                                                                                                                                                           | a) $(x = 10 \pm 3x) \cdot (x \pm 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| c) $(-x^3 + 5x - x^2 + 6)$ : $(x + 2)$ f) $(-2x + x^5 - 3x^3)$ : $(x - 4)$ Resolver las siguientes operaciones.  a) $(x + x^2 - 20)$ : $(x + 5) + (4x^3 - 6x^2)$ : $(-2x^2) =$ c) $(3x^4 - 48)$ : $(x + 2) + (2x - 3)^3 =$                                                                                                                                                                                                                                                                                                                                           | <b>b)</b> $(4x-5+2x^2):(x-3)$ <b>e)</b> $(x^4-81):(x+3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Resolver las siguientes operaciones.  a) $(x + x^2 - 20)$ : $(x + 5) + (4x^3 - 6x^2)$ : $(-2x^2) =$ c) $(3x^4 - 48)$ : $(x + 2) + (2x - 3)^3 =$                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| a) $(x + x^2 - 20)$ : $(x + 5) + (4x^3 - 6x^2)$ : $(-2x^2) =$ c) $(3x^4 - 48)$ : $(x + 2) + (2x - 3)^3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c) $(-x^3 + 5x - x^2 + 6) : (x + 2)$ f) $(-2x + x^3 - 3x^3) : (x - 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| a) $(x + x^2 - 20)$ : $(x + 5) + (4x^3 - 6x^2)$ : $(-2x^2) =$ c) $(3x^4 - 48)$ : $(x + 2) + (2x - 3)^3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| a) $(x + x^2 - 20)$ : $(x + 5) + (4x^3 - 6x^2)$ : $(-2x^2) =$ c) $(3x^4 - 48)$ : $(x + 2) + (2x - 3)^3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 Resolver las siguientes operaciones.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a) $(x + x^2 - 20) \cdot (x + 5) + (4x^3 - 6x^2) \cdot (-2x^2) =$ c) $(3x^4 - 48) \cdot (x + 2) + (2x - 3)^3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| <b>b)</b> $(5x-2)^2 + (-9x^2 - 3 + 3x^3 + x) : (x-3) =$ <b>d)</b> $(x^3 - 8) : (x-2) - (2x^3 + 54) : (x+3) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| <b>b)</b> $(5x-2)^2 - (-9x^2 - 3 + 3x^3 + x) : (x-3) =$ <b>d)</b> $(x^3 - 8) : (x-2) - (2x^3 + 54) : (x+3) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| <b>b)</b> $(5x-2)^2 + (-9x^2 - 3 + 3x^3 + x) : (x-3) =$ <b>d)</b> $(x^3 - 8) : (x-2) - (2x^3 + 54) : (x+3) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| <b>b)</b> $(5x-2)^2 - (-9x^2 - 3 + 3x^3 + x) : (x-3) =$ <b>d)</b> $(x^3 - 8) : (x-2) - (2x^3 + 54) : (x+3) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| <b>b)</b> $(5x-2)^2 - (-9x^2 - 3 + 3x^3 + x) : (x-3) =$ <b>d)</b> $(x^3 - 8) : (x-2) - (2x^3 + 54) : (x+3) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| <b>b)</b> $(5x-2)^2 - (-9x^2 - 3 + 3x^3 + x) : (x-3) =$ <b>d)</b> $(x^3 - 8) : (x-2) - (2x^3 + 54) : (x+3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| <b>b)</b> $(5x-2)^2 + (-9x^2 - 3 + 3x^3 + x) : (x-3) = $ <b>d)</b> $(x^3 - 8) : (x-2) - (2x^3 + 54) : (x + 3) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>b)</b> $(5x-2)^2 + (-9x^2-3+3x^3+x) : (x-3) = $ <b>d)</b> $(x^3-8) : (x-2) - (2x^3+54) : (x-2) = (2x^3+54) : (x-$ | + 3)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | www.l |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     |



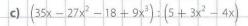
#### ESCUELA NORMAL SUPERIOR Y SUPERIOR DE COMERCIO N°46 "Domingo Guzmán Silva" Matemática

| 4to año | 2025 |
|---------|------|





c) 
$$(2x^2 - 4x)^2 - (3 - 5x^2)(3x - x^2 + 6) =$$


**b)** 
$$(-8x^5 + 20x^3 + 16x^4) : (-4x^2) + (2x - 5 - 3x^2) . (-4x) = d)  $(-5 + 3x + x^2)(4x - 1) - (3x + 2)^3 =$$$

1) 
$$(-5 + 3x - x^2)(4x - 1) - (3x + 2)^3 =$$



41 Hallar el cociente y el resto de las siguiente divisiones.

**a)** 
$$\left(-5 + 3x^2 - x^3 + 4x\right) : \left(3x + x^2\right)$$



**b)** 
$$(3x - 4x^4 + 7 - 5x^2) : (2x^2 - 3)$$

**d)** 
$$(13x^3 - 8x - 7x^4 + 5 - 6x^2 + x^5) : (x^3 - 2x^2)$$

42 Resolver las siguientes operaciones.

a) 
$$(2x^3 - 21 + 41x - 17x^2) : (2x - 7) - (2x + 5)^2 =$$



**b)** 
$$(x-x^2)(2-x)-(-3x^4+11x^2-12x+2x^5):(3+x^2-2x)=$$



c) 
$$(30x + 2x^6 - x^3 - 7x^5 - 10x^2 + x^4) : (x^3 - 2x) - (3 - x)^3 =$$



# Ejercicios de repaso 43 Hallar el cociente y el resto aplicando la Regla de Ruffini. a) $(-5x^2 + 4 - 2x^3 - 6x) : (x - 1)$ c) $(3x - x^5 + 2x^3 - 4) : (x - 3)$ **b)** $(1-x^4+2x-3x^3):(x+2)$ **d)** $(-x^7 + 3x - x^4 + 5x^2) : (x + 1)$ Unir cada división con su resto. a) $\left(-x + 2x^3 - 5x^2 + 3\right) : (x + 1)$ **d)** $(8 + 2x^3 - 5x^2 - 8x) : (x - 3)$ **b)** $(x^2 - 3x - x^3 + 12) : (x - 2)$ e) $(7x + 12x^2 + 2x^3 - 30) : (x + 4)$ (-5x<sup>4</sup> + 2x<sup>3</sup> - 50x - 6): (x + 2) 45 Resolver las siguientes operaciones. a) $(x^5 - 5x^3 + x^4 - 4x^2 + 3x - 2) : (x + 2) - (2x^2 - 3x)^2 - (3x + 7) =$ **b)** $(x^5 - 32) : (x - 2) - (3x - 9)^2 : (x - 3) + (5x^3 + 5) : (x + 1) =$

#### Unidad II: Factorización de polinomios

**Factorizar un polinomio** (o una función polinómica) significa que el polinomio expresado como sumas yrestas lo podré expresar como un **producto del coeficiente principal y de polinomios mónicos primos**.

♣ ¿qué es un polinomio primo? son aquellos polinomios de grado no nulo que no pueden descomponerse como producto de otros polinomios de grado positivo menor. Solamente son primos los polinomios de grado uno y los de grado dos sin raíces reales.

Los polinomios que no son primos son compuestos. Todos los polinomios de grado impar mayor que uno son compuestos

¿qué es un polinomio mónico? Se llama así a un polinomio de grado y coeficiente principal igual a uno (ambos son iguales a 1)

## Teorema fundamental del álgebra (TFA)

Recordemos que un valor de x es raiz de P(x) si el polinomio se anula para ese valor . Además, si P(x) está expresado como producto de otros polinomios, las raíces de éstos son las raíces de P(x).

Observen los siguientes ejemplos:

| Polinomio expresado como producto | Raices reales             | Caritidad de raíces reales |
|-----------------------------------|---------------------------|----------------------------|
| P(x) = (x - 1) (x - 2) (x + 3)    | x = 1; x = 2; x = −3      | Tres                       |
| Q(x) = (x - 7) (x - 4) (x - 4)    | x = 7; x = 4 (raíz doble) | Tres                       |
| R(x) = (x + 5) (x + 5) (x + 5)    | x = −5 (raíz triple)      | Tres                       |
| $S(x) = (x - 8) (x^2 + 1)$        | x = 8                     | Una                        |

Si al escribir un polinomio como producto hay más de un factor que tiene la misma raíz, a ésta se la llama raíz múltiple. Por eso, x = 4 es raíz doble de Q(x) (se cuentan como dos raíces), y x = -5 es raíz triple de R(x) (se cuentan como tres raíces).

En la tabla anterior figuran las *raíces reales*, pero un polinomio puede tener raíces reales y raíces no reales. Existe un teorema, llamado teorema fundamental del álgebra (TFA), a partir del cual podemos afirmar que un polinomio de grado n tiene exactamente n raíces, considerando las reales y las no reales.

Otra consecuencia de este teorema es la siguiente:

Un polinomio de grado n tiene como máximo n raíces reales.

## Raíces de polinomios de grados uno y dos

Para hallar la única raíz de un polinomio de grado uno, es decir de un polinomio de la forma  $\mathbf{a}x + \mathbf{b}$ , planteamos la ecuación  $\mathbf{a}x + \mathbf{b} = \mathbf{0}$  y despejamos x; entonces:  $x = \frac{-\mathbf{b}}{\mathbf{a}}$ 

Ejemplo:  $P(x) = 3x - 4 \implies 3x - 4 = 0 \implies x = \dots$  es la raíz de P(x).

Para hallar las raíces  $x_1$  y  $x_2$  de un polinomio de segundo grado, es decir, de un polinomio de la forma  $ax^2 + bx + c$ , resolvemos la ecuación  $ax^2 + bx + c = 0$  aplicando la fórmula resolvente. Si las raíces son reales, podemos escribir el polinomio mediante este producto:  $a \cdot (x - x_1) \cdot (x - x_2)$ .

#### Fórmula resolvente

Las soluciones  $\mathbf{x}_1$  y  $\mathbf{x}_2$  de una ecuación de la forma  $a\mathbf{x}^2 + b\mathbf{x} + c = 0$  (con  $a \neq 0$ ) pueden obtenerse reemplazando los coeficientes a, b y c en las siguientes expresiones:

$$x_1 = \frac{-b + \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$
  $x_2 = \frac{-b - \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$ 

Para abreviar, las reunimos en una sola fórmula:

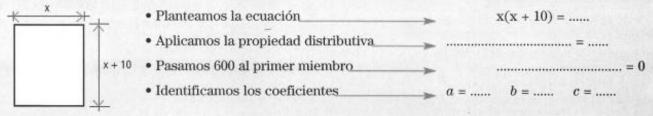
$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Observaciones: como en esta fórmula hay una raíz cuadrada, si el radicando es negativo diremos que la ecuación que intentamos resolver no tiene solución en el conjunto de los números reales.

Si la ecuación es cuadrática, pero no tiene la forma  $ax^2 + bx + c = 0$ , resolvemos todas las operaciones indicadas para reducirla a esa forma.

- Si la ecuación no tiene término lineal (b = 0), se despeja directamente la incógnita.
- Si la ecuación no tiene término independiente (c = 0), se extrae factor común x. En este caso, x = 0 es siempre una de las soluciones. La otra solución se obtiene igualando a 0 el otro factor.

$$p(x) = ax^2 + bx + c$$
 tiene raíces reales si y solo si  $b^2 - 4ac \ge 0$ .


**Ejemplo1:** Resolvamos la ecuación  $3x^2 - 2x - 1 = 0$  aplicando la fórmula resolvente.

- Identificamos los coeficientes  $a = \dots b = \dots c = \dots$
- Reemplazamos en la fórmula  $x_1, x_2 = \frac{-b \pm \sqrt{b^2 4ac}}{2a} = \frac{-(-2) \pm \sqrt{\dots}}{2a}$
- Operamos  $= x_1, x_2 = \frac{1}{6} = \frac{1}{6} = \frac{1}{6} = \frac{2 \pm 4}{6}$
- Atención con este paso: el símbolo ± indica que una de las soluciones se obtiene usando el +, y la otra, usando el -, así:

$$x_1 = \frac{2+4}{6} = \frac{\dots}{\dots} \Rightarrow x_1 = \dots$$

$$x_1, x_2 = \frac{2+4}{6} = \frac{2$$

Ejemplo 2: Un diagramador está definiendo las dimensiones que tendrá una revista. Necesita que el largo sea 10 cm mayor que el ancho y que la superficie de cada página resulte de 600 cm<sup>2</sup>. ¿Cuáles son las medidas que cumplen ambas condiciones?



· Aplicamos la fórmula resolvente y calculamos:

 $\bullet$  Como soluciones de la ecuación obtuvimos  $\mathbf{x_1} = .....$  y  $\mathbf{x_2} = .....$ . Descartamos ..... porque no tiene sentido en este problema y concluimos que la revista tendrá ....... cm de largo y ....... cm de ancho.

Volvamos a los polinomios de grado 2 o polinomios cuadráticos,

## Raíces de polinomios de la forma $P(x) = ax^n + b$

Un polinomio de la forma  $ax^n + b$  (siendo a y b números reales distintos de 0) puede o no tener raíces reales. Si las tiene, éstas son una o dos.

Para hallar las raíces reales de un polinomio de esa forma, despejamos x de la ecuación:  $ax^n + b = 0$ 

Ejemplo 1: Hallemos las raíces reales de  $R(x) = 2x^7 - 2$ 

$$R(x) = 0 \Rightarrow 2x^7 - 2 = 0 \Rightarrow 2x^7 = \dots \Rightarrow x^7 = \dots \Rightarrow x^7 = x^7 =$$

Ésta es la única raíz real del polinomio R(x).

Ejemplo 2: Hallemos las raíces reales de  $S(x) = 5x^6 - 320$ 

$$S(x) = 0 \Rightarrow 5x^6 - 320 = 0 \Rightarrow x^6 = \dots \Rightarrow \sqrt[6]{x^6} = \dots \Rightarrow |x| = \dots \Rightarrow x_1 = \dots$$
 son las únicas raíces reales de  $S(x)$ .

Ejemplo 3: Intentemos hallar las raíces reales de  $T(x) = 3x^4 + 27$ 

$$T(x) = 0 \implies 3x^4 + 27 = 0 \implies 3x^4 = -27 \implies x^4 = \dots \implies x \notin \mathbb{R}$$
, es decir que  $T(x)$  no tiene raíces reales.

## Polinomios expresados como productos

Ya sabemos cómo hallar las raíces reales de polinomios de grados uno y dos, y de polinomios de la forma:  $P(x) = ax^n + b$ . De ahora en más, cuando busquemos las raíces de un polinomio, lo que haremos es buscar sólo las **raíces reales**.

Ahora vamos a ver la ventaja de expresar un polinomio como producto.

Para estos ahora vamos a ver algunas técnicas (los casos de factoreo mas conocidos):

Ya vimos el cuadrado de un binomio y el cubo de un binomio cuando vimos multiplicación de polinomios ahora veremos otros casos especiales de factoreo que faltarían y la combinación de los mismos.

#### Factor común

Factorizar un polinomio es transformarlo en un producto de dos o más polinomios primos. Hay varios procedimientos que permiten hacerlo, y uno de ellos es el factor común.

El factor común es el monomio que se forma con el divisor común mayor de los coeficientes del polinomio y la variable elevada al menor de los exponentes.

a) 
$$24x^5 + 18x^3 - 12x^4 = 6x^3 \cdot (4x^2 + 3 - 2x)$$

a) 
$$24x^5 + 18x^3 - 12x^4 = 6x^3 \cdot \left(4x^2 + 3 - 2x\right)$$
 b)  $\frac{12}{25}x^7 + \frac{28}{5}x^5 - \frac{8}{15}x^4 = \frac{4}{5}x^4 \cdot \left(\frac{3}{5}x^3 + 7x - \frac{2}{3}\right)$ 

#### Ejercitación

Completar las siguientes factorizaciones.

a) 
$$4x - 8x^2 + 12$$
 =  $4x (3x^2 - 0)x + 0$ 

b) 
$$(3x-2+5x^3) = (3x^2+6x^3)$$

c) 
$$-x^5 - = x^4(x^3 - 1 - 1)$$

d) 
$$( -6x^3 + -2x + 5)$$
.  $= 9 -6x^3 + -21x^4$ 

e) 
$$x^4$$
.  $(x^2 + (x^2 + (x^2$ 

Colocar una X a los polinomios correctamente factorizados.

a) 
$$5x + 10x^2 = 5(x + 2x^2)$$
 d)  $x^7 - x^5 = x^4 \cdot (x^3 - x)$ 

**b)** 
$$3x^4 + 6x^2 = 3x^2$$
.  $(2 + x^2)$  **e)**  $15x^3 - 20x^2 + 5x = 5x(1 + 3x^2 - 4x)$ 

c) 
$$x^3 - x = x(1 - x^2)$$
 f)  $12x^2 - 4x^3 + 20x^4 = 2x^2 (6 - 2x + 10x^2)$ 

Factorizar los siguientes polinomios.

a) 
$$x^5 - x^2 + x^4 =$$
 d)  $-6x^3 + 9x^5 - 24x^6 + 30x^4 =$ 

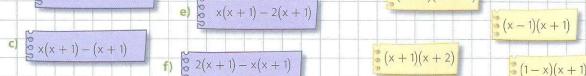
**b)** 
$$21x + 35x^4 - 14 =$$
 **e)**  $\frac{5}{6}x^4 + \frac{10}{9}x^7 - \frac{20}{27}x^3 - \frac{25}{12}x^6 =$ 

c) 
$$24x^2 + 16x - 40x^4 =$$
 f)  $1.2x^7 + 1.8x^3 - 2.4x^5 - 3x^2 =$ 

## Factor común por grupos

El factor común por grupos se aplica a los polinomios que no tienen un factor común en todos sus términos. Se forman grupos de igual cantidad de términos de manera tal que en cada grupo haya un factor común, y a partir de la factorización de cada grupo, se obtiene un nuevo factor común.

a) 
$$2x^3 + 6x^2 + 5x + 15 = 2x^2$$
.  $(x + 3) + 5(x + 3) = (x + 3)(2x^2 + 5)$ 


**b)** 
$$x^5 + 3x^2 - x^3 - 3 = \underbrace{x^5 - x^3}_{x^3} + \underbrace{3x^2 - 3}_{3} = x^3 \cdot \underbrace{\left(x^2 - 1\right)}_{\text{puevo factor}} + 3\underbrace{\left(x^2 - 1\right)}_{\text{puevo factor}} = \left(x^2 - 1\right)\left(x^3 + 3\right)$$

b) 
$$x^5 + 3x^2 - x^3 - 3 = \underbrace{x^5 - x^3}_{x^3} + \underbrace{3x^2 - 3}_{3} = x^3 \cdot \underbrace{(x^2 - 1)}_{\text{nuevo factor comun}} + 3\underbrace{(x^2 - 1)}_{\text{nuevo factor comun}} = (x^2 - 1)(x^3 + 3)$$
c)  $\underbrace{4x^4 + 4x^3 + 8x^2 - 3x^2 - 3x - 6}_{-3} = 4x^2 \cdot \underbrace{(x^2 + x + 2)}_{\text{nuevo factor comun}} - 3\underbrace{(x^2 + x + 2)}_{\text{nuevo factor comun}} = (x^2 + x + 2)(4x^2 - 3)$ 

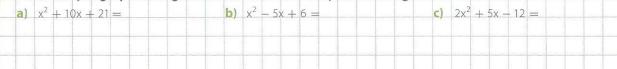
d) 
$$x^2 + 7x + 10 = \underbrace{x^2 + 5x}_{x} + \underbrace{2x + 10}_{2} = \underbrace{x (x + 5)}_{\text{nuevo factor}} + 2\underbrace{(x + 5)}_{\text{nuevo factor}} = (x + 5)(x + 2)$$

4 Unir cada polinomio con su factorización.

b) 
$$(x-2)(-x+1)$$



5 Factorizar por grupos los siguientes polinomios.


**a)** 
$$x^3 + x^2 + 5x + 5 =$$
 **d)**  $x^4 + x^3 - x - 1 =$ 

**b)** 
$$3x^2 - 6 + x^3 + 2x =$$
 **e)**  $x^5 + 3x^4 + x^3 + 2x^2 + 6x + 2 =$ 

c) 
$$2x^4 + 6 - x^5 - 3x =$$
 f)  $3x^7 + 6x^5 - 12x^4 - 4x^3 - 8x + 16 =$ 

#### Para pensar y resolver

Factorizar por grupos los siguientes trinomios descomprimiendo alguno de sus términos.



(x + 1)(x + 1)

## Para trabajar en clase

## Trinomio cuadrado perfecto

#### Teoría

Un trinomio cuadrado perfecto se factoriza como el cuadrado de un binomio.

$$a^2 + 2ab + b^2 = (a + b)^2$$

a) 
$$x^2 + 18x + 81 = x^2 + 2 \cdot x \cdot 9 + 9^2 = (x + 9)^2$$

b) 
$$9x^2 - 30x + 25 = (3x)^2 + 2 \cdot 3x \cdot (-5) + (-5)^2 = (3x - 5)^2$$

#### Ejercitación

7 Completar los casilleros para que los trinomios sean cuadrados perfectos.

a) 
$$x^2 + 2 + 36$$

d) 
$$16x^2 - + 100$$

b) 
$$x^2 - 14x + ($$

$$+20x + 4$$

$$64 - + 36x^2$$

8 Factorizar los siguientes trinomios cuadrados prefectos.

a) 
$$x^2 + x + 0.25 =$$

**d)** 
$$1-2x^2+x^4=$$

**b)** 
$$x^4 + x^2 + 2x^3 =$$

e) 
$$2x^4 + x^6 + x^2 =$$

c) 
$$0,\hat{1} + x^2 - 0,\hat{6}x =$$

$$(6) x^2 + 0.0625 + 4x^4 =$$

9 Factorizar los siguientes polinomios combinando los procedimientos.

a) 
$$3x^3 + 12x^2 + 12x =$$

**d)** 
$$8x^4 + 24x^3 + 18x^2 =$$

**b)** 
$$x^4 + 2x^3 + x^2 + 2x =$$

e) 
$$4x^9 - 8x^7 + 12x^5 - 24x^3 =$$

## Cuatrinomio cubo perfecto

Un cuatrinomio cubo perfecto se factoriza como el cubo de un binomio.

$$a^3 + 3a^2$$
.  $b + 3ab^2 + b^3 = (a + b)^3$ 

- a)  $x^3 + 6x^2 + 12x + 8 = x^3 + 3x^2 \cdot 2 + 3x \cdot 2^2 + 2^3 = (x + 2)^3$
- b)  $8x^3 60x^2 + 150x 125 = (2x)^3 + 3 \cdot (2x)^2 \cdot (-5) + 3 \cdot 2x \cdot (-5)^2 + (-5)^3 = (2x 5)^3$
- 10 Completar los casilleros para que los cuatrinomios sean cubos perfectos.

a)  $x^3 +$ 

 $x^3 + 75x +$ + 27

**b)**  $8x^3 +$ + 64

 $+189x^2 + 441x +$ 

#### Diferencia de cuadrados

El producto entre la suma y la diferencia de dos monomios es igual a la diferencia de sus cuadrados.

$$(a + b)(a - b) = a^2 - ab + ba - b^2 = a^2 - ab + ab - b^2 = a^2 - b^2$$

En conclusión:  $a^2 - b^2 = (a + b)(a - b)$ 

a)  $x^2 - 4 = (x + 2)(x - 2)$  b)  $4x^2 - 1 = (2x + 1)(2x - 1)$  c)  $x^6 - 9 = (x^3 + 3)(x^3 - 3)$ 

Factorizar las siguientes diferencias de cuadrados.

a)  $x^2 - 1 =$ 

d)  $9x^2 - 4 =$ 

g)  $121 - x^6 =$ 

**b)**  $x^2 - 100 =$ 

e)  $x^4 - 49 =$ 

h)  $36x^8 - 1 =$ 

c)  $25 - x^2 =$ 

f)  $25x^4 - 81 =$ 

i)  $x^{10} - 64 =$ 

12 Factorizar los siguientes polinomios combinando los procedimientos.

a)  $2x^4 - 6x^3 + 6x^2 - 2x =$ 

 $54x^6 + 54x^5 + 18x^4 + 2x^3 =$ 

**b)**  $x^3 + 3x^2 - x - 3 =$ 

d)  $20x^3 - 45x + 8x^2 - 18 =$ 

#### Teorema de Gauss

#### Teoria

La **raíz** de un polinomio es el valor de x que verifica que su valor numérico es 0 y puede tener a lo sumo tantas raíces reales como el valor de su grado.

Todo polinomio de grado **n**, con **n** raíces reales, puede ser factorizado como:

$$P(x) = ax^{n} + bx^{n-1} + ... + cx + d = a(x - x_1)(x - x_2)...(x - x_n)$$

Por ejemplo:

$$P(x) = x^2 - x - 6 \begin{cases} P(3) = 3^2 - 3 - 6 = 0 \Rightarrow x_1 = 3 \text{ es raíz del polinomio} \\ P(-2) = \left(-2\right)^2 - \left(-2\right) - 6 = 0 \Rightarrow x_2 = -2 \text{ es raíz del polinomio} \end{cases}$$

$$P(x) = x^2 - x - 6 = (x - 3)(x + 2)$$

Si un polinomio tiene su coeficiente principal igual a 1 y su término independiente es entero, sus raíces reales enteras son divisores del término independiente.

Para hallar las raíces reales enteras de un polinomio, se deben encontrar los divisores del término independiente y probar cuál de ellas verifica que su valor numérico es 0.

Por ejemplo:  $P(x) = x^2 + 3x - 10$ 

Los divisores del término independiente son: 1, -1, 2, -2, 5, -5, 10 y -10.

De esos 8 valores, solo 2y - 5 verifican que el valor numérico es 0:

$$P(2) = 2^2 + 3 \cdot 2 - 10 = 0$$
 y  $P(-5) = (-5)^2 + 3 \cdot (-5) - 10 = 0$ 

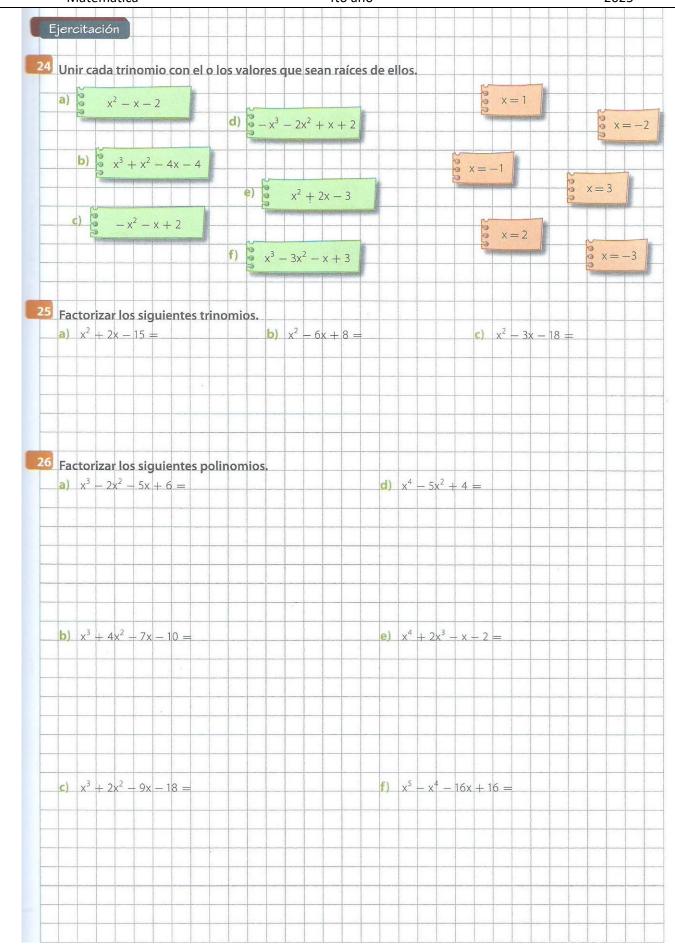
$$P(x) = x^2 + 3x - 10 = (x - 2)(x + 5)$$

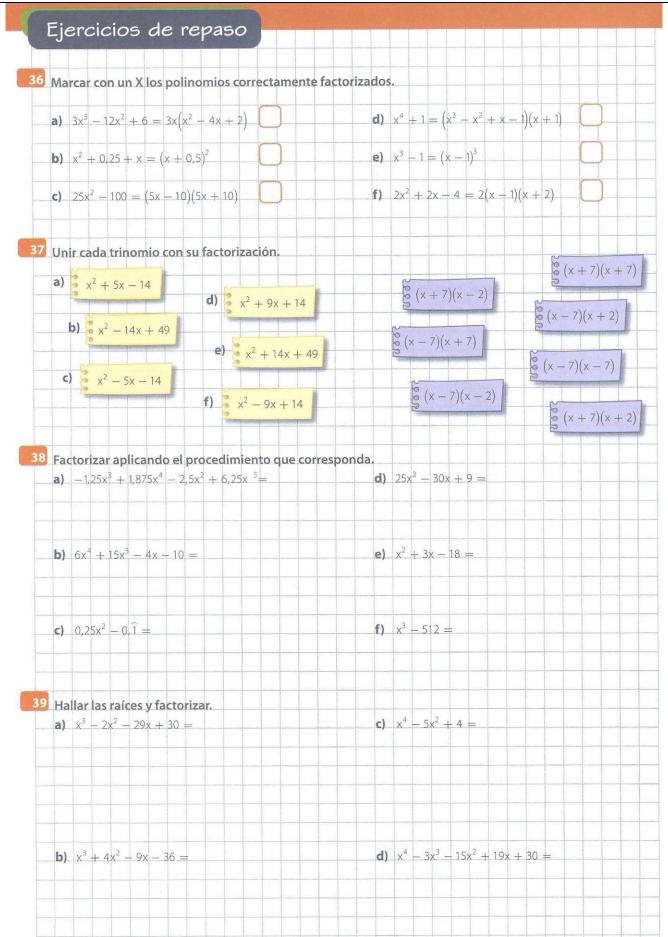
También, se puede hallar una de las raíces y aplicar la Regla de Ruffini:

Por ejemplo:  $Q(x) = x^3 + 4x^2 + x - 6$ 

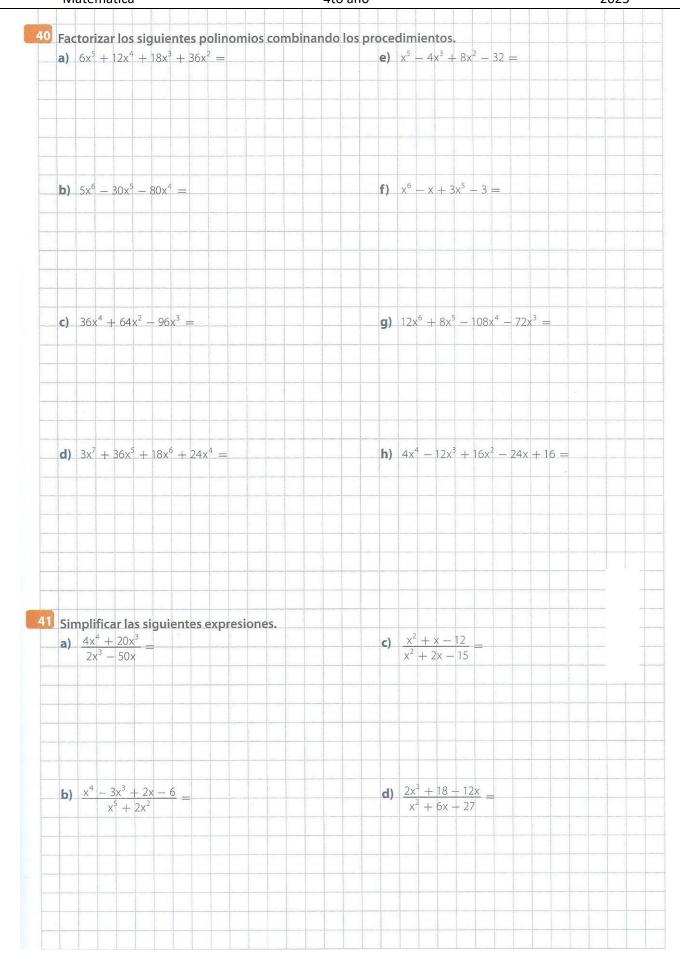
Los divisores del término independiente son: 1, -1, 2, -2, 3, -3, 6 y -6.

$$Q(1) = 1^3 + 4 \cdot 1^2 + 1 - 6 = 0$$


$$x^{3} + 4x^{2} + x - 6 = \underbrace{\left(x^{2} + 5x + 6\right)}_{C(x)}(x - 1) \Rightarrow Q(x) = C(x) \cdot (x - 1)$$


$$C(-2) = (-2)^2 + 5 \cdot (-2) + 6 = 0$$

$$C(x) = (x + 3)(x + 2)$$


$$Q(x) = C(x) \cdot (x-1) \Rightarrow Q(x) = (x+3)(x+2)(x-1)$$

# ESCUELA NORMAL SUPERIOR Y SUPERIOR DE COMERCIO N°46 "Domingo Guzmán Silva" Matemática 4to año 2025





# ESCUELA NORMAL SUPERIOR Y SUPERIOR DE COMERCIO N°46 "Domingo Guzmán Silva" Matemática 4to año 202



#### **Actividad:** Colocar una X a los polinomios correctamente factorizados

| I | a) | $5x + 10x^2 = 5(x + 2x^2)$  |  |
|---|----|-----------------------------|--|
|   | b) | $3x^4 + 6x^2 = 3x^2(2+x^2)$ |  |
|   | ۲) | $r^3 - r - r(1 - r^2)$      |  |

| d) | $x^7 - x^5 = x^4(x^3 - x)$                    |  |
|----|-----------------------------------------------|--|
| e) | $15x^3 - 20x^2 + 5x = 5x(1 + 3x^2 - 4x)$      |  |
| f) | $12x^2 - 4x^3 + 20x^4 = 2x^2(6 - 2x + 10x^2)$ |  |

#### Ejercitación de cierre

1) Factorizar los siguientes trinomios

a) 
$$x^2 + 2x - 15 =$$

b) 
$$x^2 - 6x + 8 =$$

c) 
$$x^2 - 3x - 18 =$$

2) Factorizar los siguientes polinomios

a) 
$$x^3 - 2x^2 - 5x + 6 =$$

b) 
$$x^3 + 4x^2 - 7x - 10 =$$

c) 
$$x^3 + 2x^2 - 9x - 18 =$$

d) 
$$x^4 - 5x^2 + 4 =$$

e) 
$$x^4 + 2x^3 - x - 2 =$$

f) 
$$x^5 - x^4 - 16x + 16 =$$

3) Marcar con una X los polinomios correctamente factorizados

a) 
$$3x^3 - 12x^2 + 6 = 3x(x^2 - 4x + 2)$$

a) 
$$3x^3 - 12x^2 + 6 = 3x(x^2 - 4x + 2)$$

c) 
$$25x^2 - 100 - (5x + 10)(5x - 10)$$

d) 
$$x^4 + 1 = (x+1)(x^3 - x^2 + x - 1)$$

e) 
$$x^3 - 1 = (x - 1)^3$$

b) 
$$x^2 + 0.25 + x = (x + 0.5)^2$$
 e)  $x^3 - 1 = (x - 1)^3$  f)  $2x^2 + 2x - 4 = 2(x - 1)(x + 2)$ 

4) Unir cada trinomio con su factorización

a) 
$$x^2 + 5x - 4$$

b) 
$$x^2 - 14x + 49$$

c) 
$$x^2 - 5x - 14$$

d) 
$$x^2 + 9x + 14$$

e) 
$$x^2 + 14x + 49$$

f) 
$$x^2 - 9x + 14$$

$$(x+7)(x-2)$$

$$II \qquad (x-7)(x+7)$$

III 
$$(x-7)(x-2)$$

IV. 
$$(x + 7)(x + 2)$$

V. 
$$(x+7)(x+7)$$

VI. 
$$(x-7)(x+2)$$

VII. 
$$(x-7)(x-7)$$

5) Factorizar aplicando el procedimiento que corresponda

a) 
$$-1.25x^3 + 1.875x^4 - 2.5x^2 + 6.25x^5 =$$
 b)  $25x^2 - 30x + 9 =$ 

b) 
$$25x^2 - 30x + 9 =$$

6) Hallar las raíces y factorizar

a) 
$$x^3 - 2x^2 - 29x + 30 =$$

b) 
$$x^3 + 4x^2 - 9x - 36 =$$

c) 
$$x^4 - 5x^2 + 4 =$$

d) 
$$x^4 - 3x^3 - 15x^2 + 19x + 30 =$$

7) Factorizar los siguientes polinomios combinando los procedimientos

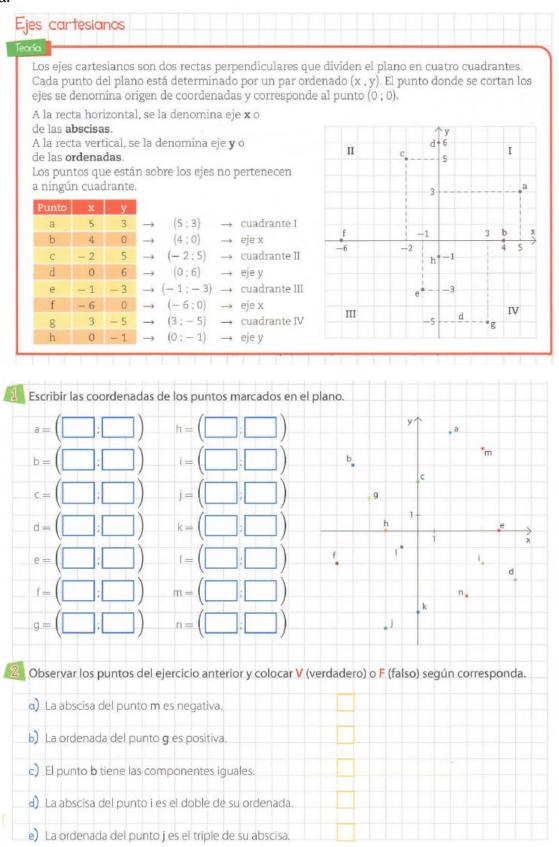
a) 
$$6x^5 + 12x^4 + 18x^3 + 36x^2 =$$

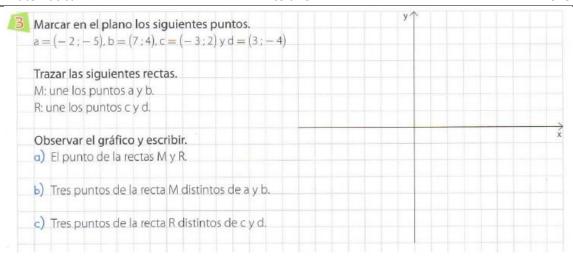
e) 
$$x^5 - 4x^3 + 8x^2 - 32 =$$

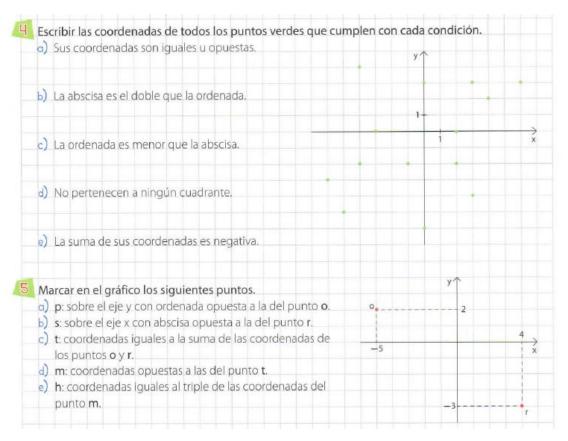
b) 
$$5x^6 - 30x^5 - 80x^4 =$$

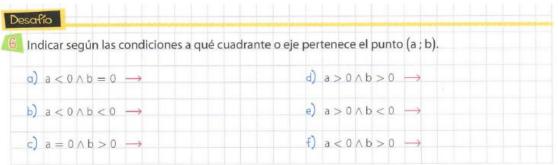
f) 
$$x^6 + 3x^5 - x - 3 =$$

c) 
$$36x^4 + 64x^2 - 96x^3 =$$


g) 
$$12x^6 + 8x^5 - 108x^4 - 72x^3 =$$


d) 
$$3x^7 + 36x^5 + 18x^6 + 24x^4 =$$


h) 
$$4x^4 - 12x^3 + 16x^2 - 24x + 16 =$$


#### **Unidad III: Funciones**

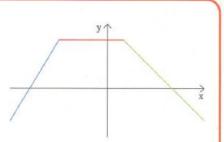
Antes de empezar el tema tendremos que ver cómo se ubican los puntos en el plano y aprender a interpretar gráficos. Por esto tenemos que ver algunos nuevos términos y cuestiones a tener en cuenta.





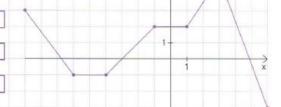





#### Matemática 4to año 2025



Una gráfica representa la relación que existe entre dos variables mediante puntos en un plano. Para realizar el análisis de una gráfica, se debe tener en cuenta qué ocurre con los valores de la ordenada a medida que varían los valores de la abscisa.


Al aumentar el valor de x, puede ocurrir que el valor de y

- aumente, entonces, la gráfica aumenta.
- disminuya, entonces, la gráfica disminuye.
- se mantenga igual, entonces, la gráfica es constante.





- e) 1 < x < 2

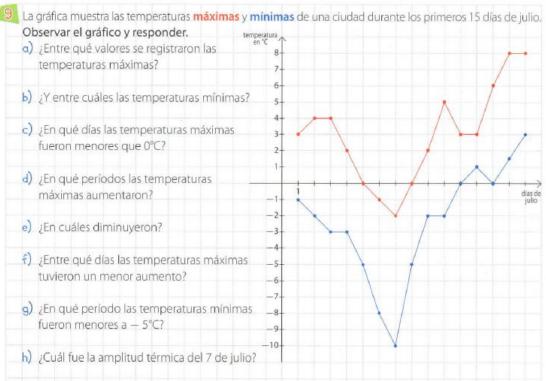


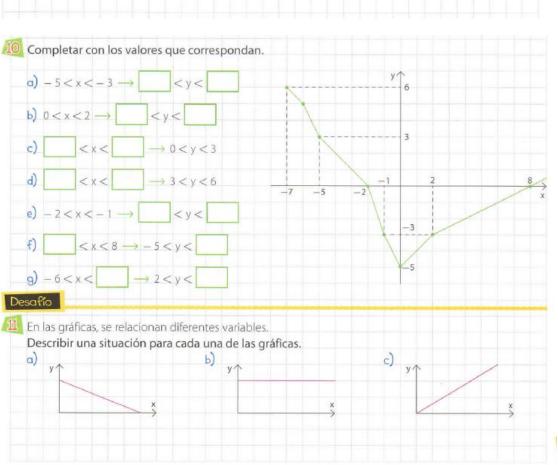
#### Observar la gráfica y completar los pares ordenados.

Escribir todos los puntos que cumplan con cada condición.

- g) Tengan ordenada igual a 3:
- h) Tengan las componentes iguales:

Observar la gráfica y responder.


¿Entre qué valores varía la abscisa?




- ¿Entre cuáles la ordenada?
- k) ¿Entre qué valores de x la gráfica es negativa?
- ) ¿Entre cuáles es positiva?

m) ¿Y entre cuáles es constante?

Ahora es tu turno de interpretar los gráficos así que les dejamos varias actividades para pensar!!





## Concepto de Función

Teoría

Una relación entre dos conjuntos numéricos A y B es un conjunto de pares ordenados (x; y), con la condición de que  $x \in A \land y \in B$ .

Ejemplo: R: A  $\rightarrow$  B  $\land$  A = {0; 1; 2}  $\land$  B = {3; 4; 5; 6}

a) 
$$R_1 = \{(0;3), (0;4), (1;5), (2;6)\}$$
 b)  $R_2 = \{(1;3), (2;5)\}$  c)  $R_3 = \{(0;5), (1;6), (2;3)\}$ 

b) 
$$R_2 = \{(1;3), (2;5)\}$$

c) 
$$R_3 = \{(0;5), (1;6), (2;3)\}$$

Una relación es una función cuando se cumplen dos condiciones:

- 1) Todos los elementos del conjunto A están relacionados con algún elemento del conjunto B
- 2) Cada elemento del conjunto A se relaciona con un único elemento del conjunto B (unicidad).

Del ejemplo anterior:

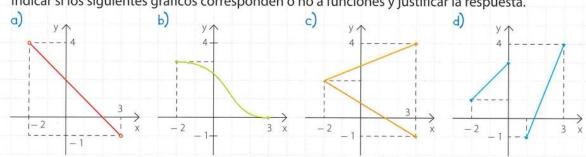
En R<sub>1</sub>, el 0 se relaciona con 2 elementos del conjunto B, el 3 y el 4 (no cumplen con la condición de unicidad).

En R<sub>2</sub>, el 0 no está relacionado con ningún elemento del conjunto B (no cumple con la condición de existencia).

En R<sub>3</sub>, todos los elementos de A se relacionan con un único elemento de B, por lo tanto, es función,

$$f: A \to B \land f = \{(0; 5), (1; 6), (2; 3)\}$$

$$f(x)=y\left\{\begin{array}{l} f(0)=5\rightarrow 5 \text{ es la "imagen" de 0 y 0 es la "preimagen" de 5}\\ f(1)=6\rightarrow 6 \text{ es la "imagen" de 1 y 1 es la "preimagen" de 6}\\ f(2)=3\rightarrow 3 \text{ es la "imagen" de 2 y 2 es la "preimagen" de 3} \end{array}\right.$$


Se define R: A  $\rightarrow$  B  $\land$  A = {2;4;7;8}  $\land$  B = {1;3;5;7;9}

Indicar si las siguientes relaciones son o no funciones y justificar la respuesta.

| a) | X | У | b) | X | У | c) | X | у | d) | X | у | 6) | X | У |
|----|---|---|----|---|---|----|---|---|----|---|---|----|---|---|
|    | 2 | 1 |    | 7 | 1 |    | 2 | 3 | -/ | 8 | 1 | -  | 8 | 5 |
|    | 4 | 1 |    | 7 | 3 |    | 8 | 1 |    | 7 | 5 |    | 4 | 3 |
|    | 7 | 1 |    | 7 | 5 |    | 4 | 5 |    | 4 | 9 |    | 7 | 1 |
|    | 8 | 1 |    | 7 | 9 |    |   |   |    | 2 | 3 |    | 2 | 9 |
|    |   |   |    |   |   |    |   |   |    |   |   |    | 8 | 7 |

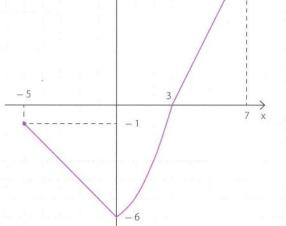
Se define R: A → B  $\wedge$  A =  $[-2;3] \wedge$  B = [-1;4]

Indicar si los siguientes gráficos corresponden o no a funciones y justificar la respuesta.



# 3 Observar el gráfico de la función y responder.

- a) ¿Cuál es la imagen de 3?
- b) ¿Y cuál la de 3?
- c) ¿Cuál es la preimagen de 2?
- d) ;Y cuál la de 4?
- e) ¿En qué valor de x la función vale 0?
- f) ¿En qué valor de y el valor de x es 0?
- g) Escribir dos valores de x con la misma imagen.



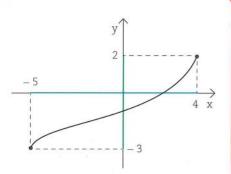

h) 
$$f(2) =$$
 j)  $f(-4) =$ 

j) 
$$f(-4) =$$

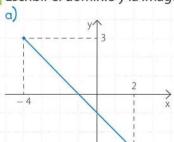
i) 
$$f(\square) = 6$$

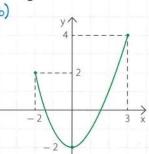
k) 
$$f( ) = 8$$

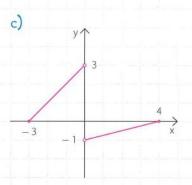



# Dominio e imagen de una función

En una función f:  $\mathbb{R} \to \mathbb{R}$ , su **dominio** es un conjunto de números reales que pueden ser valores de x; y su imagen, los que pueden ser valores de y.


a) En la función f, el dominio son los valores marcados en azul; y la imagen, los marcados en verde.


$$f: [-5; 4] \rightarrow [-3; 2]$$
Dominio Imagen


b) En la función  $y = f(x) = \sqrt{x}$ , el dominio son los reales positivos; y el cero, al igual que su imagen: f:  $\mathbb{R}_0^+ \to \mathbb{R}_0^+$ .



## Escribir el dominio y la imagen de las siguientes funciones.







- Hallar el dominio de las siguientes funciones.
  - a) f(x) = 5x 1
- c)  $f(x) = \sqrt[3]{x}$

e)  $f(x) = \frac{1}{x+2}$ 

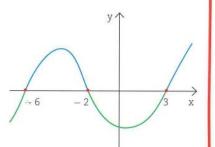
b)  $f(x) = \frac{1}{x}$ 

- f)  $f(x) = \sqrt{1-x}$

- 6 Decidir si las siguientes relaciones son o no funciones y justificar.
- a)  $R_1: N_0 \to N_0 \land R_1(x) = x 1$  b)  $R_2: N \to Q \land R_2(x) = \sqrt{x}$  c)  $R_3: N_0 \to Q \land R_3(x) = \frac{x}{x + 5}$

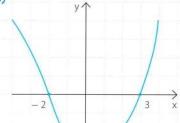
## Conjuntos de ceros o raíces, positividad y negatividad

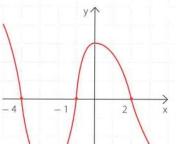
• El **conjunto de ceros** o **raíces** de una función son los valores de x que determinan que f(x) = 0.

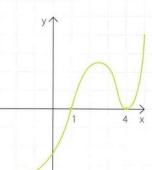

$$f(-6) = 0 \land f(-2) = 0 \land f(3) = 0 \Rightarrow \mathbf{C}^0 = \{-6; -2; 3\}$$

El o los conjuntos de positividad son los intervalos reales de los valores de x que determinan que la función sea positiva, o sea, que f(x) > 0, (gráfica en azul).

$$C^+ = (-6; -2) \cup (3; +\infty)$$

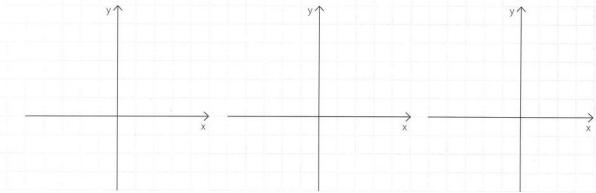




$$C^- = (-\infty; -6) \cup (-2; 3)$$




Escribir los conjuntos de ceros, positividad y negatividad de las siguientes funciones.

a)

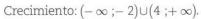







8 Realizar el gráfico de una función que cumpla con las condiciones pedidas en cada caso.

a)  $f(1) = 0 \land f(-3) = 0 \land f(0) > 0$  b)  $C^0 = \{-2; 0; 3\} \land f(-5) < 0 \land f(1) < 0$  c)  $f(-4) = 0 \land f(0) = 0 \land C^- = \emptyset$ 



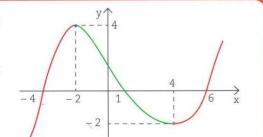

## Intervalos de crecimiento y decrecimiento

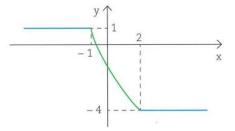
#### Teoría

Si a medida que los valores de x aumentan, el valor de la función aumenta, entonces, la función **crece**; pero si disminuyen, entonces, la función **decrece**.

En  $\mathbf{x} = -2$  y  $\mathbf{x} = 4$ , la función no crece ni decrece. Los puntos (-2; 4) y (4; -2) se denominan **máximo** y **mínimo relativo**, respectivamente.

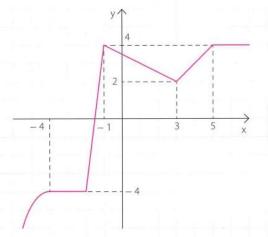



Decrecimiento: (-2; 4).


Cuando al aumentar los valores de x, los valores de la función no varían, la función no crece ni decrece, sino que se mantiene **constante**.

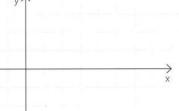
$$f(-3) = f(-2) = f(-1) = 1$$

$$f(2) = f(3) = f(4) = -4$$


La función es constante en:  $(-\infty; -1) \cup (2; +\infty)$ .






# Observar el gráfico y escribir.

- a) Los intervalos de crecimiento y decrecimiento.
- b) El o los intervalos donde es constante.
- c) El o los puntos máximos y/o mínimos relativos.



# Graficar una función que cumpla con las siguientes condiciones.

- Crecimiento:  $(-\infty; -5) \cup (2; +\infty)$
- Es constante: (-5; -2)
- f(-7) = f(0) = f(5) = 0
- Mínimo relativo en (2; −2)



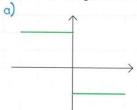
#### Desafío

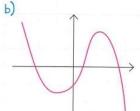
### Indicar cuáles de las siguientes funciones son crecientes, decrecientes o constantes.

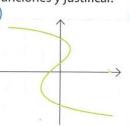
- a) f(x) = x + 3
- c) f(x) = 1 x
- e)  $f(x) = x^3$

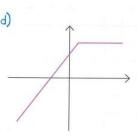
b) f(x) = 2

d)  $f(x) = \sqrt{x}$ 


f) f(x) = -7

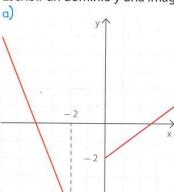

#### Repaso

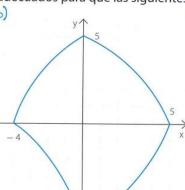


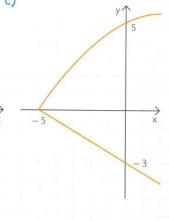


12 Indicar si las siguientes relaciones de R:  $\mathbb{R} \to \mathbb{R}$  son funciones y justificar.








Escribir un dominio y una imagen adecuados para que las siguientes relaciones sean funciones.

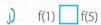




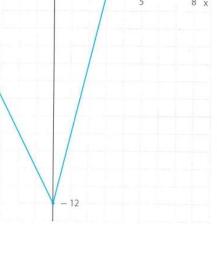




Observar el gráfico de la función y responder.


a) ¿Cuál es el dominio y la imagen de la función?

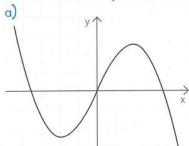


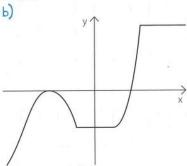

- c) ¿Cuál es la imagen de 2?
- d) ¿Y cuál la de 0?
- e) ¿Cuáles son las preimágenes de 4?
- f) ¿En qué intervalo la función vale 8?

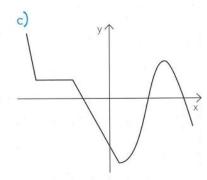
Colocar >, < o = según corresponda.





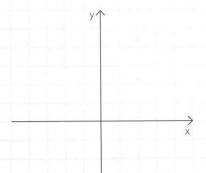


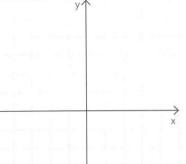



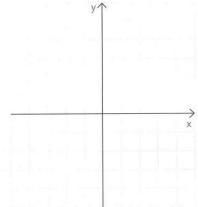




## 15 Marcar sobre el eje x.

- Con rojo: los intervalos de positividad.
- Con verde: los intervalos de negatividad.
- Con azul: el conjunto de ceros o raíces.

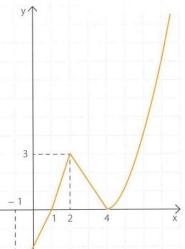


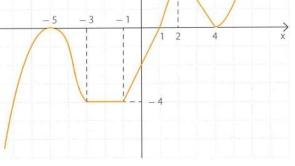




#### 16 Realizar el gráfico de una función que cumpla con las condiciones pedidas en cada caso.

- a) Es constante en  $(-\infty; -1);$ decreciente en (-1;3) y tiene un mínimo relativo en (3; -4).
- b) Es constante en (-2;0) y es creciente en  $(-\infty; -2)$  U  $(3;+\infty).$
- c) Tiene máximos relativos en (-4;1) y (3;0) y f(0) = -3.





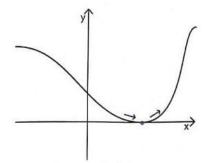

#### Observar el gráfico y escribir.

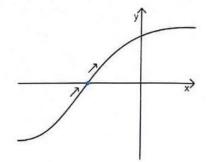
a) Los conjuntos de ceros, positividad y negatividad.



- b) Los intervalos de crecimiento y decrecimiento.
- c) El o los intervalos donde es constante.
- d) El o los puntos máximos y/o mínimos relativos.

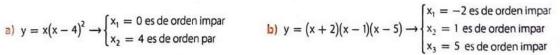


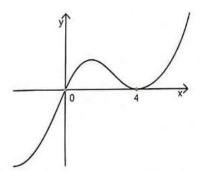

## Unidad IV: Función polinómica

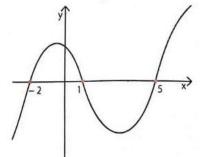

Una función cuya fórmula es  $y = ax^n + bx^{n-1} + ... + cx + d$  es una función **polinómica** de grado n y tiene a lo sumo n raíces reales.

El orden de multiplicidad de una raíz es la cantidad de veces que esa raíz se repite como tal y determina si la función toca o atraviesa el eje x.

 Si el orden de multiplicidad es par, la función toca el eje x pero no lo atraviesa.


 Si el orden de multiplicidad es impar, la función atraviesa el eje x.

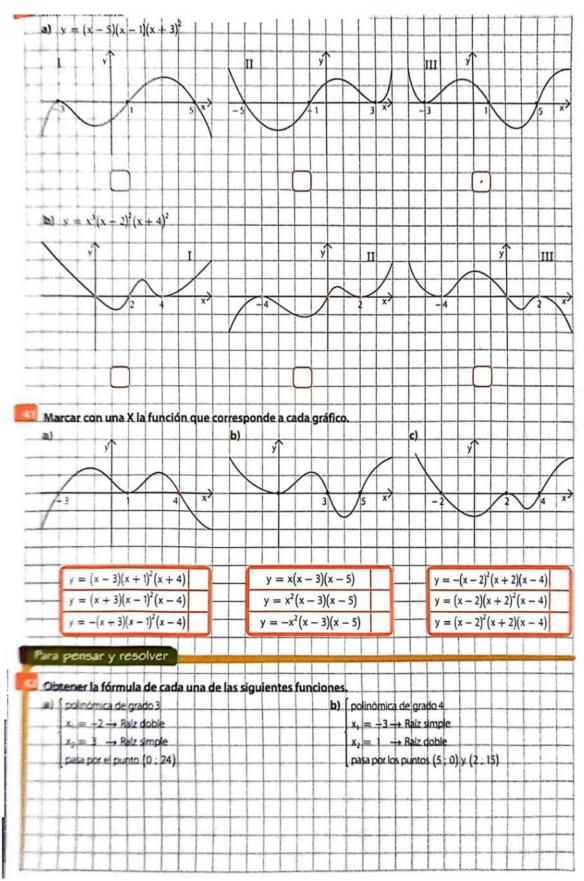



Para analizar el comportamiento de una función polinómica, se debe factorizar su fórmula y obtener todas sus raíces.

$$y = ax^n + bx^{n-1} + ... + cx + d = a(x - x_n)(x - x_{n-1})...(x - x_2)(x - x_1)$$







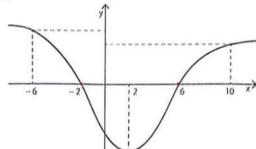

Ejercitación

Factorizar las siguientes funciones e indicar el orden de multiplicidad de cada raíz. a)  $y = x^3 - x^2 - 6x$ 

40 - Marcar la gráfica que representa la función polinómica



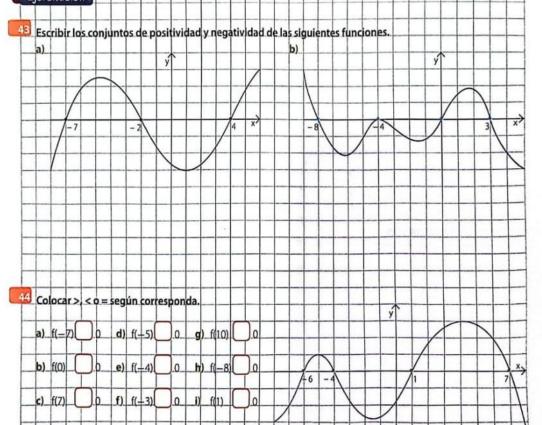
#### Para trabajar en clase

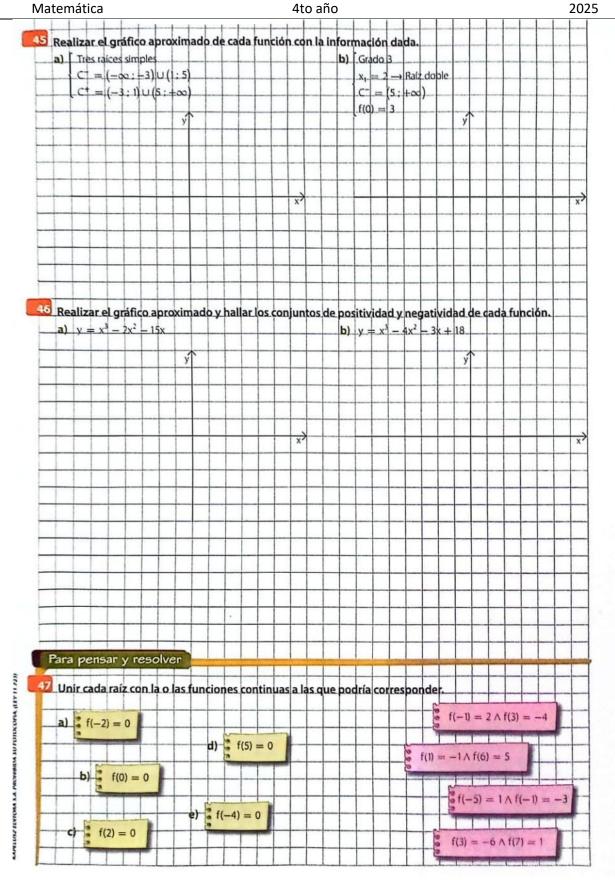

### Teorema de Bolzano

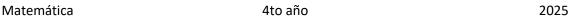
Teoria

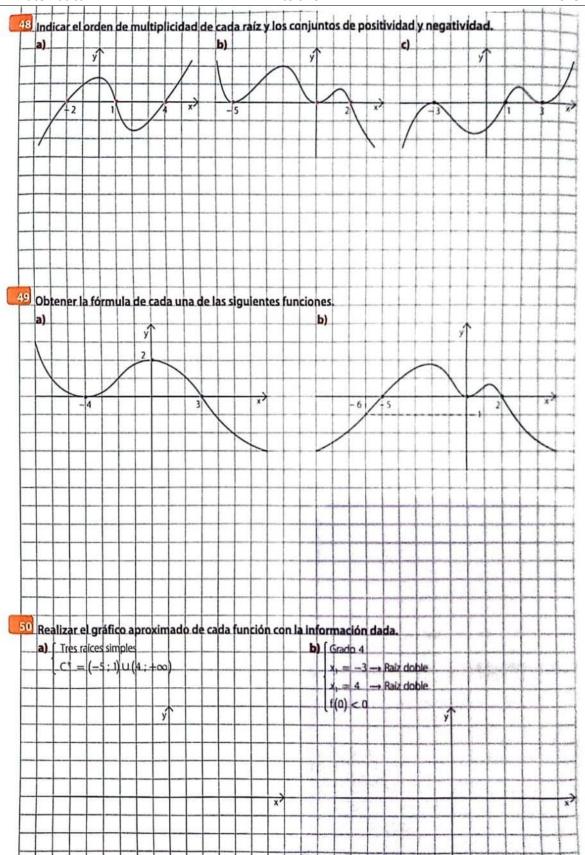
Si una función es continua en un intervalo de su dominio y tiene distinto signo en sus extrernos, entonces la función tiene, al menos, una raíz en ese intervalo.

$$\begin{cases} f(-6) > 0 \\ f(2) < 0 \end{cases} \Rightarrow f(-2) = 0 \land -2 \in (-6; 2)$$


$$\begin{cases} f(2) < 0 \\ f(10) > 0 \end{cases} \Rightarrow f(6) = 0 \land 6 \in (2; 10)$$





$$C^{+} = (-\infty; -2) \cup (6; +\infty) \ y \ C^{-} = (-2; 6)$$


Las raíces de orden impar determinan los conjuntos de positividad y negatividad de una función polinómica.

#### Ejercitación









51 – Realizar el gráfico aproximado de las siguientes funciones polinómicas y determinar los conjuntos de positividad y negatividad, crecimiento y decrecimiento.

a) 
$$y = x^3 - x^2 - 2x$$

b) 
$$y = x^4 - 10x^3 + 25x^2$$

b) 
$$y = x^4 - 10x^3 + 25x^2$$
 c)  $y = x^4 + 3x^3 - 3x^2 - 11x - 6$